Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Линейный функционал называется банаховым пределом если выполняются следующие 3 условия:
1) [Примечание 1]

2) для любых

3) для любого , где  — оператор сдвига, действующий следующим образом:

Существование таких пределов было доказано Стефаном Банахом[1]. Из определения следует, что и , если последовательность сходится. Множество банаховых пределов обозначается как . выпуклое замкнутое множество на единичной сфере пространства . Из неравенства треугольника следует, что для любых справедливо неравенство . Если и являются крайними точками множества , то [2].

Лемма 1

Различные банаховы пределы несравнимы, то есть если , то [3].

Теорема 1

Функционал можно представить в виде ()  тогда и только тогда, когда

  1. для всех

Для того, чтобы при указанных условиях данное представление было единственным, необходимо и достаточно, чтобы [3].

Понятие почти сходимости

Для заданных , , для любых

равномерно по [4]. Последнее равенство называется критерием Лоренца. Его можно уточнить следующим образом[5]:

Последовательность называется почти сходящейся к числу , если значения всех банаховых пределов на этой последовательности равны . Используется следующее обозначение: . Множество почти сходящихся последовательностей имеет обозначение . линейное не сепарабельное пространство, замкнутое и нигде не плотное в . Множество почти сходящихся к числу последовательностей обозначается как . Ясно, что для любого [3].

Пример

Последовательность не имеет обычного предела, но . Для проверки равенства можно использовать критерий Лоренца или свойство данной последовательности: .

Также можно будет использовать следующую лемму:

Лемма 2

Любая периодическая последовательность почти сходится к числу, равному среднему арифметическому значений по периоду [3].

Характеристические функции

Системой Радемахера называется последовательность функций

Каждому можно поставить в соответствие функцию

которая называется характеристической функцией банахова предела . комплекснозначная функция[6].

Теорема 2

Если и для всех , то для всех [6].

Свойства характеристических функций

Пусть , тогда

  1. периодична, причём периодом является любое двоично-рациональное число из
  2. для любых
  3. , что для любого и
  4. график плотен в прямоугольнике
  5. для всех

[6]

Источники

Примечания

  1. Здесь и далее под понимается последовательность

Литература

  • Стефан Банах. Théorie Opérations Linéaires. — Варшава, 1932.
  • Е.М. Семёнов, Ф.А. Сукочёв. Характеристические функции банаховых пределов // Сибирский математический журнал. — 2010. — Т. 51, № 4.
  • E.Semenov and F.Sukochev. Extreme points of the set of banach limits (англ.).
  • Lorentz G.G. Contribution to the theory of divergent sequences. — Acta Math, 1948. — С. 167-190. (англ.)
  • Усачёв А.А. Пространство почти сходящихся последовательностей и банаховы пределы / Е.М. Семёнов. — Воронеж: ВГУ, 2009. — 93 с.
  • Sucheston L. Banach limits (англ.) // Amer. Math. Monthly. — 1967. — Vol. 74, no. 3. — P. 308—311. (англ.)
Эта страница в последний раз была отредактирована 6 ноября 2020 в 07:55.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).