To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Organic anion transporter 1

From Wikipedia, the free encyclopedia

Figure 1
Schematic representation of transmembrane proteins:
1. a membrane protein with one transmembrane domain
2. a membrane protein with three transmembrane domains
3. OAT1 is believed to have twelve transmembrane domains.[1]
The membrane is represented in light brown.

The organic anion transporter 1 (OAT1) also known as solute carrier family 22 member 6 (SLC22A6) is a protein that in humans is encoded by the SLC22A6 gene.[2][3][4] It is a member of the organic anion transporter (OAT) family of proteins. OAT1 is a transmembrane protein that is expressed in the brain, the placenta, the eyes, smooth muscles, and the basolateral membrane of proximal tubular cells of the kidneys. It plays a central role in renal organic anion transport. Along with OAT3, OAT1 mediates the uptake of a wide range of relatively small and hydrophilic organic anions from plasma into the cytoplasm of the proximal tubular cells of the kidneys. From there, these substrates are transported into the lumen of the nephrons of the kidneys for excretion. OAT1 homologs have been identified in rats, mice, rabbits, pigs, flounders, and nematodes.[5]

YouTube Encyclopedic

  • 1/5
    Views:
    561 550
    10 839
    138 182
    26 403
    9 286
  • Secondary active transport in the nephron | Renal system physiology | NCLEX-RN | Khan Academy
  • Easy to Understand - Renal Transport
  • Renal Physiology: Reabsorption and Excretion
  • UPTAKE AND TRANSPORT OF MINERAL NUTRIENTS
  • Ion channels and membrane potential

Transcription

In the last video on the nephron, we talked about the different parts of the nephron and what, I guess, molecules are reabsorbed by the body and the different parts. If you remember, in the proximal convoluted tubule, we talked about maybe glucose and amino acids and sodium being reabsorbed. We talked about the ascending part of the loop of Henle. We talked about salts, so that sodium, potassium, chlorine being reabsorbed. In the distal convoluted tubule, it was calcium, other things. But at least in my mind, when I first learned it, I said how does that happen? How do we actively pump out these things, especially against their own concentration gradients? What I want to do in this video is get a little bit more depth on exactly what's happening on the borders of these tubules to actually allow these ions to be selectively transported out of the lumen or the inside of these tubes or to be reabsorbed out of the filtrate. The mechanism's actually reasonably similar in the different parts of the nephron, but let's look at each of the parts, because they're each reabsorbing different types of molecules. And I won't go through all of the molecules, but I'll just give you a sense of things. Let's start with the proximal tubule right here. So let's say if we were to zoom in right over on that part-- so let me draw the inside of the nephron. The inside of the nephron maybe looks something like this. So this the inside. This is where our filtrate is right here. Actually, let me draw it a little bit different than that. So the inside, I'm going to draw it like this because the proximal tubule has these little things that stick out, sometimes referred to as a brush border. So this inside right here, this is our lumen. That is where the filtrate is. The glomerular filtrate is coming in this direction. This is, you can imagine, the inside of the nephron. And then the border of the tubule is made up by a bunch of cells. So maybe this is one cell right here, this is another cell right here, that's another cell. Obviously, this is a cross-section. It would be actually more of a cylinder. It would go around like that. This is to give an idea. That's another cell right there. And maybe this is their basal side right there. And when we say basal, we can imagine that's kind of the base of the cell. Those are good words to know, fancy words. So the side of the cells that are facing the lumen, or kind of facing the inside of our tubule, this is called the apical side. And then this side is normally referred to the basal lateral side, or this membrane, if you view this as a membrane, this would be the basolateral membrane. This is true regardless of what part of the nephron we're in, whether the proximal, whether the loop of Henle, or whether we're in the distal part. What we have here, and on the other sides of these cells, we'll have our peritubular capillaries. That's another fancy word. So our peritubular capillaries will look something like this. They're actually cells as well. Actually, instead of drawing the cells, I'll just draw it as kind of the tube of-- I'll just draw it like this. They're porous. So this is actually blood flow right here. This is blood right here. This is blood right here. I'm not going to do too much detail on the actual cells of the capillary walls. I really want to give you the idea of how things are transported out of the lumen, how they're selectively reabsorbed. So this is the peritubular capillary. And once again, fancy word, but peri means around, like perimeter. So it's around the tubes. These capillaries go around the tubes. If I were overlay it on this picture, we have these capillaries that are going all around the tubes. So when things get secreted or reabsorbed out of the nephrons, they're going into those capillaries. So this is our proximal convoluted membrane right here. Let's think about what happens with the glucose. So what happens is we actually have sodium-potassium pumps on the basolateral side of these cells. So this is sodium-potassium pumps. I'll just draw one right here. You might want to watch the video on sodium-potassium pumps. I have a whole video on it. But the idea here is that sodium, maybe I'll draw as plus particles right there, they'll attach on the inside right here, ATP will come along. When ATP attaches to the right part of this protein, it'll change its shape, its conformation, and then the protein will essentially close on this side and open on that side, and then when it's in that conformation, the sodium doesn't want to bond as much to the protein and it will go outside or it'll cross the basolateral membrane and eventually make its way into the blood. And then on the other side, it's a sodium-potassium pump. When it's in this kind of open configuration-- I'll draw it over here; I have a whole video on this-- at that point, potassium likes to bond to it. So potassium likes to bond to it. Maybe it bonds to it over here. This is a gross oversimplification. That causes the protein to change its conformation. It doesn't require ATP at that point, and it goes back to this conformation, and then the potassium doesn't want to bond anymore, and then it gets released, because the protein is now a different shape. So the general idea: Sodium bonds. ATP bonds. The ATP gets its phosphate popped off of it. That changes the shape of the protein to this. Now the sodium wants to get released, and now potassium wants to join. When potassium joins, we get to our original one. The end product of this is we're having sodium being pumped out of the cell and we're having potassium being pumped into the cell, and this is active transport. Why is it active transport? Because we're using ATP to drive sodium against its concentration gradient to keep pumping the sodium out of the cell, and then potassium kind of comes in, you could almost imagine, passively. It doesn't require ATP. And that's why this is often called a sodium-potassium ATPase, which means it's a protein or an enzyme that breaks ATP. But it breaks ATP, it uses that energy to change its shape to pump sodium out and potassium in. Well, anyway, this is all a review of what we learned in those videos, but how does that help us, for example, get glucose out of our lumen? Well, what we have over here is we have other proteins. I'll just do the example of glucose. Let's say we have a protein here. There's a very general term for this. It's a cotransporter or a symporter. Symporter means it transfers two types of molecules in the same direction. Cotransporter means one molecule wants to go through because of its concentration gradient and the other molecule kind of goes along for the ride. So you can imagine, we're actively pumping out sodium. So if we're actively pumping out sodium over here on the basolateral side, then we're going to have a low sodium concentration here. The more we pump out, the lower this is, and eventually it's going to be lower than the sodium concentration in the lumen. So the sodium concentration gradient, if there was no membrane here, sodium would want to go across this to kind of make up for all of the lost sodiums over here. Sodium would want to cross that if there was no barrier. These cells here take advantage of sodium wanting to move down its concentration gradient, which is happening because of this active transport over here, but it uses that energy of sodium going down its concentration gradient to actually also transport, in this case, maybe some glucose. So if you had to visualize it, you could imagine a protein that's on this apical membrane right here. Maybe it looks something like this. This is to get some type of visualization. Maybe you have more sodium on this side than you have on this side, so sodium is more likely to bond here. Maybe glucose will bond here. This is just a simplification, but when they bond, this protein is going to change its shape to look something more like this when they bond, and now the sodium is going to be here and the glucose is going to be here. We're essentially on the inside of the cell now, and in this conformation, they don't want to bond as much to the amino acids or whatever else is in the protein, and then they get released. And when they get released, then the protein will change its shape back to this right here and we can do this cycle over again. But this is all stipulated on the idea that there's more sodium over here to bump into this point to make this reaction happen. So sodium's going to go down in its concentration gradient. It's taking glucose for the ride. And so essentially glucose concentration will go up high here, and then if we make this porous to glucose so glucose can go through, then glucose will eventually, if this gets high enough, it'll just go down its concentration gradient eventually into the blood. And this same exact process is happening, maybe not exactly with glucose, but throughout the entire nephron. If we go to the loop of Henle, if we go to the ascending part right here, where we're trying to get the salts out of the picture, same idea. So let's say that that right there is the lumen. This is a cell that makes up the wall of the lumen. We're in the loop of Henle now and you have a sodium-potassium pump out here. You have sodium being pumped out. You have potassium gets pumped in, but actually, potassium channels are leaky, so potassium can often make its way back out in either direction. So what's happening to potassium isn't that important. But so sodium concentration becomes low here. So what we have are symporters over here, just like we had with glucose, but in this case, sodium wants to enter just as the case with glucose, but here we're trying to transport chlorine and potassium ions. So that's what we're going to join. That's what's going to take advantage of sodium's concentration gradient. We're going to have potassium and we're going to have chlorine ions. And actually, this symporter right here, it's called the sodium-potassium-chlorine cotransporter, and it's actually the second variation that you actually get in the ascending loop of Henle. So eventually, you're going to end up with a lot of chlorine here-- actually, potassium from both directions-- but as long as this is porous to chlorine, if this concentration gets high enough, the chlorine is going to make its way out and help make the medulla that much saltier along with the sodium. Same thing in the distal convoluted tubule. There, calcium. It's a little bit different. So if we're in the distal convoluted tubule, these kind of villi, these things that stick out-- this is only in the proximal convoluted tubule, those brush borders. But over there-- and just so you know, this idea where we're using a concentration gradient that's driven by some type of active transport to transport other things, this is called secondary active transport. That's nice to know. And then just finishing up at the distal convoluted tubule. So this was the lumen. Let's say that this is the lumen right here, so we have cells on either side of that. I think you get the general idea. The distal's a little bit different so let's say this is a cell, and let's say that this is a peritubular capillary right here. This is our blood. What we have here is once again, we're pumping sodium out. Sodium-potassium pumps. I have a whole video on that, and that pumps potassium in, so you end up with a lot of sodiums over here. The apical membrane that faces the lumen, it's porous to calcium. Whatever the concentration of calcium here, it's going to be here. So maybe you have calcium. These are calcium ions just like that floating around. And right here, what you have is an antiporter. So our concentration in the blood of sodium is going to be higher because we keep pumping it out. And so sodium, if you let it go down its concentration gradient, it would go back in. And so maybe right here you have some sodium going down, its concentration gradient going back in, and then when that goes in, that you can almost imagine it's some type of a rotating door, it makes the calcium go out. You can try to visualize it yourself how a protein would actually do that. I kind of imagine a revolving door. The sodium makes the door revolve. The calcium is at the other part of the door and it gets spit out. So this is called an antiporter because they're going in different directions, but once again, it's secondary active transport, because the only way that this could work is if we have active transport using ATP of the sodium out of the basolateral membrane in every one of these cases. Anyway, hopefully, you found that useful. It's more detailed than you normally get on how the nephron is actually pumping things out of the lumen into the peritubular capillaries, but for me, it made things a lot more concrete. It helps me really kind of internalize what the nephron is up to.

Function

SLC22A6
Identifiers
AliasesSLC22A6, HOAT1, OAT1, PAHT, ROAT1, Organic anion transporter 1, solute carrier family 22 member 6
External IDsOMIM: 607582 MGI: 892001 HomoloGene: 16813 GeneCards: SLC22A6
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_153279
NM_004790
NM_153276
NM_153277
NM_153278

NM_008766

RefSeq (protein)

NP_004781
NP_695008
NP_695009
NP_695010

NP_032792

Location (UCSC)Chr 11: 62.94 – 62.98 MbChr 19: 8.6 – 8.61 Mb
PubMed search[8][9]
Wikidata
View/Edit HumanView/Edit Mouse

OAT1 functions as organic anion exchanger. When the uptake of one molecule of an organic anion is transported into a cell by an OAT1 exchanger, one molecule of an endogenous dicarboxylic acid (such as glutarate, ketoglutarate, etc.) is simultaneously transported out of the cell.[5] As a result of the constant removal of endogenous dicarboxylic acid, OAT1-positive cells are at risk of depleting their supply of dicarboxylates. Once the supply of dicarboxylates is depleted, the OAT1 transporter can no longer function.

To prevent the loss of endogenous dicarboxylates, OAT1-positive cells also express a sodium-dicarboxylate cotransporter called NaDC3 that transports dicarboxylates back into the OAT1-positive cell. Sodium is required to drive this process. In the absence of a sodium gradient across the cell membrane, the NaDC3 cotransporter ceases to function, intra-cellular dicarboxylates are depleted, and the OAT1 transporter also grinds to a halt.[10]

The renal organic anion transporters OAT1, OAT3, OATP4C1, MDR1, MRP2, MRP4 and URAT1 are expressed in the S2 segment of the proximal convoluted tubules of the kidneys. OAT1, OAT3, and OATP4C1 transport small organic anions from the plasma into the S2 cells. MDR1, MRP2, MRP4 and URAT1 then transports these organic anions from the cytoplasm of the S2 cells into the lumen of the proximal convoluted tubules. These organic anions are then excreted in the urine.[5]

Substrates

Known substrates of OAT1 include para-aminohippurate (PAH), dicarboxylates, prostaglandins, cyclic nucleotides, urate, folate, diuretics, ACE inhibitors, antiviral agents, beta-lactam antibiotics, antineoplastics, mycotoxins, sulfate conjugates, glucuronide conjugates, cysteine conjugates, ochratoxin A, NSAIDs, mercapturic acids and uremic toxins.[5]

Regulation

Alterations in the expression and function of OAT1 play important roles in intra- and inter-individual variability of the therapeutic efficacy and the toxicity of many drugs. As a result, the activity of OAT1 must be under tight regulation so as to carry out their normal functions.[11] The regulation of OAT transport activity in response to various stimuli can occur at several levels such as transcription, translation, and posttranslational modification. Posttranslational regulation is of particular interest, because it usually happens within a very short period of time (minutes to hours) when the body has to deal with rapidly changing amounts of substances as a consequence of variable intake of drugs, fluids, or meals as well as metabolic activity.[11] Post-translational modification is a process where new functional group(s) are conjugated to the amino acid side chains in a target protein through reversible or irreversible biochemical reactions. The common modifications include glycosylation, phosphorylation, ubiquitination,[11] sulfation, methylation, acetylation, and hydroxylation.

Antiviral induced Fanconi syndrome

Nucleoside analogs are a class of antiviral drugs that work by inhibiting viral nucleic acid synthesis. The nucleoside analogs acyclovir (ACV), zidovudine (AZT), didanosine (ddI), zalcitabine (ddC), lamivudine (3TC), stavudine (d4T), trifluridine,[12] cidofovir, adefovir,[13] and tenofovir (TDF) [14] are substrates of the OAT1 transporter. This may result in the buildup of these drugs in the proximal tubule cells. At high concentrations, these drugs inhibit DNA replication. This, in turn, may impair the function of these cells and may be the cause of antiviral induced Fanconi syndrome. The use of stavudine,[15] didenosine, abacavir, adefovir,[16] cidofovir [17] and tenofovir has been associated with Fanconi syndrome. Clinical features of tenofovir-induced Fanconi syndrome include glycosuria in the setting of normal serum glucose levels, phosphate wasting with hypophosphatemia, proteinuria (usually mild), acidosis, and hypokalemia, with or without acute renal failure.[18]

Mitochondrial inhibition

Since nucleoside analogs can build up in OAT1-positive cells and can inhibit mitochondrial replication, these drugs may lead to the depletion of mitochondria inside renal proximal tubules. Renal biopsies have demonstrated the depletion of tubule cell mitochondria among individuals receiving antiviral therapy with tenofovir. The remaining mitochondria were enlarged and dysmorphic.[19] In vitro the antiviral drugs didanosine and zidovudine are more potent inhibitors of mitochondrial DNA synthesis than tenofovir (ddI > AZT > TDF).[20] In its non-phosphorylated form, the drug acyclovir does not significantly inhibit mitochondrial DNA synthesis, unless the cell happens to be infected with a herpes virus.[citation needed]

Stavudine, zidovudine and indinavir (IDV) cause a decrease in mitochondrial respiration and an increase in mitochondrial mass in fat cells. Stavudine also causes severe mitochondrial DNA depletion. Combining zidovudine with stavudine does not increase the mitochondrial toxicity compared to stavudine alone. Both of these drugs must be phosphorylated by host enzymes before they become active. Zidovudine inhibits the phosphorylation of stavudine. This might reduce the toxicity of the combination. Using indinavir in combination with the other two drugs did not increase the toxicity of the combination. Indinavir is a protease inhibitor and works by a different mechanism than the other antiviral drugs. (d4T+AZT+IDV = d4T+AZT = d4T+IDV > AZT+IDV = AZT = IDV). All three of these drugs inhibit the expression of respiratory chain subunits (cytochrome c oxidase [CytOx]2 and CytOx4) in white fat cells but not brown fat cells.[21] Since stavudine and zidovudine are OAT1 substrates, they may have similar effects on proximal renal tubule cells as they do on fat cells.

Lamivudine has reverse chirality compared to didanosine, stavudine, zidovudine, and natural nucleosides. Mitochondrial DNA polymerase may not recognize it as a substrate. Lamivudine is not toxic to mitochondria in vivo.[22] Individuals who had been taking didanosine combined with stavudine exhibited improved mitochondrial function when they switched to lamivudine combined with tenofovir.[22][23]

Mitochondrial toxicity of OAT1 substrates:

  • in vitro:
    • d4T+AZT = d4T > AZT
    • ddI > AZT > TDF > ACV
  • in vivo
    • d4T > AZT
    • ddI > AZT > TDF
    • d4T + ddI > 3TC + TDF

See also

References

  1. ^ Sekine T, Cha SH, Endou H (July 2000). "The multispecific organic anion transporter (OAT) family" (PDF). Pflügers Arch. 440 (3): 337–50. doi:10.1007/s004240000297. PMID 10954321. S2CID 32469988.
  2. ^ Reid G, Wolff NA, Dautzenberg FM, Burckhardt G (Jan 1999). "Cloning of a human renal p-aminohippurate transporter, hROAT1". Kidney Blood Press Res. 21 (2–4): 233–7. doi:10.1159/000025863. PMID 9762842. S2CID 46811285.
  3. ^ Lu R, Chan BS, Schuster VL (Mar 1999). "Cloning of the human kidney PAH transporter: narrow substrate specificity and regulation by protein kinase C". Am J Physiol. 276 (2 Pt 2): F295–303. doi:10.1152/ajprenal.1999.276.2.F295. PMID 9950961.
  4. ^ "Entrez Gene: SLC22A6 solute carrier family 22 (organic anion transporter), member 6".
  5. ^ a b c d Sekine T, Miyazaki H, Endou H (February 2006). "Molecular physiology of renal organic anion transporters". Am. J. Physiol. Renal Physiol. 290 (2): F251–61. doi:10.1152/ajprenal.00439.2004. PMID 16403838.
  6. ^ a b c GRCh38: Ensembl release 89: ENSG00000197901 - Ensembl, May 2017
  7. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000024650 - Ensembl, May 2017
  8. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  9. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  10. ^ Stellmer F, Keyser B, Burckhardt BC, et al. (July 2007). "3-Hydroxyglutaric acid is transported via the sodium-dependent dicarboxylate transporter NaDC3". J. Mol. Med. 85 (7): 763–70. doi:10.1007/s00109-007-0174-5. PMID 17356845. S2CID 2922696.
  11. ^ a b c Xu D, Wang H, You G (2016). "Posttranslational Regulation of Organic Anion Transporters by Ubiquitination: Known and Novel". Med Res Rev. 36 (5): 964–79. doi:10.1002/med.21397. PMC 5147025. PMID 27291023.
  12. ^ Wada S, Tsuda M, Sekine T, Cha SH, Kimura M, Kanai Y, Endou H (September 2000). "Rat multispecific organic anion transporter 1 (rOAT1) transports zidovudine, acyclovir, and other antiviral nucleoside analogs". J. Pharmacol. Exp. Ther. 294 (3): 844–9. PMID 10945832.
  13. ^ Ho ES, Lin DC, Mendel DB, Cihlar T (March 2000). "Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1". J. Am. Soc. Nephrol. 11 (3): 383–93. doi:10.1681/ASN.V113383. PMID 10703662.
  14. ^ Kohler JJ; Hosseini SH; Green E; Russ R; Santoianni R; Lewis w (April 2010). "OAT1 Knock-out Mice Define Its Role in Tenofovir Transport and Renal Proximal Tubular Mitochondrial Toxicity". FASEB J. 24 (1_MeetingAbstracts): Meeting abstracts, 1030.1. doi:10.1096/fasebj.24.1_supplement.1030.1.
  15. ^ Nelson M, Azwa A, Sokwala A, Harania RS, Stebbing J (2008). "Fanconi syndrome and lactic acidosis associated with stavudine and lamivudine therapy". AIDS. 22 (11): 1374–6. doi:10.1097/QAD.0b013e328303be50. PMID 18580619. S2CID 5229576.
  16. ^ Ahmad M (2006). "Abacavir-induced reversible Fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome". J Postgrad Med. 52 (4): 296–7. PMID 17102551.
  17. ^ Vittecoq D, Dumitrescu L, Beaufils H, Deray G (August 1997). "Fanconi syndrome associated with cidofovir therapy". Antimicrob. Agents Chemother. 41 (8): 1846. doi:10.1128/AAC.41.8.1846. PMC 164022. PMID 9257778.
  18. ^ Atta MG, Fine DM (March 2009). "Editorial comment: tenofovir nephrotoxicity--the disconnect between clinical trials and real-world practice". AIDS Read. 19 (3): 118–9. PMID 19334329.
  19. ^ Herlitz LC, Mohan S, Stokes MB, Radhakrishnan J, D'Agati VD, Markowitz GS (September 2010). "Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities". Kidney Int. 78 (11): 1171–1177. doi:10.1038/ki.2010.318. PMID 20811330.
  20. ^ Vidal F, Domingo JC, Guallar J, et al. (November 2006). "In vitro cytotoxicity and mitochondrial toxicity of tenofovir alone and in combination with other antiretrovirals in human renal proximal tubule cells". Antimicrob. Agents Chemother. 50 (11): 3824–32. doi:10.1128/AAC.00437-06. PMC 1635212. PMID 16940060.
  21. ^ Viengchareun S, Caron M, Auclair M, et al. (2007). "Mitochondrial toxicity of indinavir, stavudine and zidovudine involves multiple cellular targets in white and brown adipocytes". Antivir. Ther. (Lond.). 12 (6): 919–29. doi:10.1177/135965350701200610. PMID 17926646. S2CID 25419054.
  22. ^ a b Honkoop P, de Man RA, Scholte HR, Zondervan PE, Van Den Berg JW, Rademakers LH, et al. (1997). "Effect of lamivudine on morphology and function of mitochondria in patients with chronic hepatitis B." Hepatology. 26 (1): 211–5. doi:10.1002/hep.510260128. PMID 9214472. S2CID 8029309.
  23. ^ Ananworanich J, Nuesch R, Côté HC, Kerr SJ, Hill A, Jupimai T, et al. (2008). "Changes in metabolic toxicity after switching from stavudine/didanosine to tenofovir/lamivudine--a Staccato trial substudy". J Antimicrob Chemother. 61 (6): 1340–3. doi:10.1093/jac/dkn097. PMID 18339636.

Further reading

This page was last edited on 4 March 2023, at 00:44
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.