To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Quasi-complete space

From Wikipedia, the free encyclopedia

In functional analysis, a topological vector space (TVS) is said to be quasi-complete or boundedly complete[1] if every closed and bounded subset is complete.[2] This concept is of considerable importance for non-metrizable TVSs.[2]

YouTube Encyclopedic

  • 1/3
    Views:
    44 976
    285 412
    1 586 076
  • Do Space and Time Really Exist? | Full Debate | Huw Price, Julian Barbour, Michela Massimi
  • How Can Soyuz Reach The Space Station In Only 3 Hours?
  • Salyut 7 - The forgotten rescue of a dead space station

Transcription

Properties

Examples and sufficient conditions

Every complete TVS is quasi-complete.[7] The product of any collection of quasi-complete spaces is again quasi-complete.[2] The projective limit of any collection of quasi-complete spaces is again quasi-complete.[8] Every semi-reflexive space is quasi-complete.[9]

The quotient of a quasi-complete space by a closed vector subspace may fail to be quasi-complete.

Counter-examples

There exists an LB-space that is not quasi-complete.[10]

See also

References

Bibliography

  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
  • Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.
  • Wong, Yau-Chuen (1979). Schwartz Spaces, Nuclear Spaces, and Tensor Products. Lecture Notes in Mathematics. Vol. 726. Berlin New York: Springer-Verlag. ISBN 978-3-540-09513-2. OCLC 5126158.
This page was last edited on 2 November 2022, at 23:31
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.