To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Approximation property

From Wikipedia, the free encyclopedia

The construction of a Banach space without the approximation property earned Per Enflo a live goose in 1972, which had been promised by Stanisław Mazur (left) in 1936.[1]

In mathematics, specifically functional analysis, a Banach space is said to have the approximation property (AP), if every compact operator is a limit of finite-rank operators. The converse is always true.

Every Hilbert space has this property. There are, however, Banach spaces which do not; Per Enflo published the first counterexample in a 1973 article. However, much work in this area was done by Grothendieck (1955).

Later many other counterexamples were found. The space of bounded operators on an infinite-dimensional Hilbert space does not have the approximation property.[2] The spaces for and (see Sequence space) have closed subspaces that do not have the approximation property.

YouTube Encyclopedic

  • 1/3
    Views:
    1 172
    30 570
    29 074
  • 05.04. The Best Approximation Property
  • Projection is closest vector in subspace | Linear Algebra | Khan Academy
  • Least Squares Approximation | MIT 18.06SC Linear Algebra, Fall 2011

Transcription

Definition

A locally convex topological vector space X is said to have the approximation property, if the identity map can be approximated, uniformly on precompact sets, by continuous linear maps of finite rank.[3]

For a locally convex space X, the following are equivalent:[3]

  1. X has the approximation property;
  2. the closure of in contains the identity map ;
  3. is dense in ;
  4. for every locally convex space Y, is dense in ;
  5. for every locally convex space Y, is dense in ;

where denotes the space of continuous linear operators from X to Y endowed with the topology of uniform convergence on pre-compact subsets of X.

If X is a Banach space this requirement becomes that for every compact set and every , there is an operator of finite rank so that , for every .

Related definitions

Some other flavours of the AP are studied:

Let be a Banach space and let . We say that X has the -approximation property (-AP), if, for every compact set and every , there is an operator of finite rank so that , for every , and .

A Banach space is said to have bounded approximation property (BAP), if it has the -AP for some .

A Banach space is said to have metric approximation property (MAP), if it is 1-AP.

A Banach space is said to have compact approximation property (CAP), if in the definition of AP an operator of finite rank is replaced with a compact operator.

Examples

  • Every subspace of an arbitrary product of Hilbert spaces possesses the approximation property.[3] In particular,
    • every Hilbert space has the approximation property.
    • every projective limit of Hilbert spaces, as well as any subspace of such a projective limit, possesses the approximation property.[3]
    • every nuclear space possesses the approximation property.
  • Every separable Frechet space that contains a Schauder basis possesses the approximation property.[3]
  • Every space with a Schauder basis has the AP (we can use the projections associated to the base as the 's in the definition), thus many spaces with the AP can be found. For example, the  spaces, or the symmetric Tsirelson space.

References

  1. ^ Megginson, Robert E. An Introduction to Banach Space Theory p. 336
  2. ^ Szankowski, A.: B(H) does not have the approximation property. Acta Math. 147, 89-108(1981).
  3. ^ a b c d e Schaefer & Wolff 1999, p. 108-115.

Bibliography

  • Bartle, R. G. (1977). "MR0402468 (53 #6288) (Review of Per Enflo's "A counterexample to the approximation problem in Banach spaces" Acta Mathematica 130 (1973), 309–317)". Mathematical Reviews. MR 0402468.
  • Enflo, P.: A counterexample to the approximation property in Banach spaces. Acta Math. 130, 309–317(1973).
  • Grothendieck, A.: Produits tensoriels topologiques et espaces nucleaires. Memo. Amer. Math. Soc. 16 (1955).
  • Halmos, Paul R. (1978). "Schauder bases". American Mathematical Monthly. 85 (4): 256–257. doi:10.2307/2321165. JSTOR 2321165. MR 0488901.
  • Paul R. Halmos, "Has progress in mathematics slowed down?" Amer. Math. Monthly 97 (1990), no. 7, 561—588. MR1066321
  • William B. Johnson "Complementably universal separable Banach spaces" in Robert G. Bartle (ed.), 1980 Studies in functional analysis, Mathematical Association of America.
  • Kwapień, S. "On Enflo's example of a Banach space without the approximation property". Séminaire Goulaouic–Schwartz 1972—1973: Équations aux dérivées partielles et analyse fonctionnelle, Exp. No. 8, 9 pp. Centre de Math., École Polytech., Paris, 1973. MR407569
  • Lindenstrauss, J.; Tzafriri, L.: Classical Banach Spaces I, Sequence spaces, 1977.
  • Nedevski, P.; Trojanski, S. (1973). "P. Enflo solved in the negative Banach's problem on the existence of a basis for every separable Banach space". Fiz.-Mat. Spis. Bulgar. Akad. Nauk. 16 (49): 134–138. MR 0458132.
  • Pietsch, Albrecht (2007). History of Banach spaces and linear operators. Boston, MA: Birkhäuser Boston, Inc. pp. xxiv+855 pp. ISBN 978-0-8176-4367-6. MR 2300779.
  • Karen Saxe, Beginning Functional Analysis, Undergraduate Texts in Mathematics, 2002 Springer-Verlag, New York.
  • Schaefer, Helmut H.; Wolff, M.P. (1999). Topological Vector Spaces. GTM. Vol. 3. New York: Springer-Verlag. ISBN 9780387987262.
  • Singer, Ivan. Bases in Banach spaces. II. Editura Academiei Republicii Socialiste România, Bucharest; Springer-Verlag, Berlin-New York, 1981. viii+880 pp. ISBN 3-540-10394-5. MR610799
This page was last edited on 4 April 2024, at 17:56
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.