To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Bounded inverse theorem

From Wikipedia, the free encyclopedia

In mathematics, the bounded inverse theorem ( also called inverse mapping theorem or Banach isomorphism theorem) is a result in the theory of bounded linear operators on Banach spaces. It states that a bijective bounded linear operator T from one Banach space to another has bounded inverse T−1. It is equivalent to both the open mapping theorem and the closed graph theorem.

YouTube Encyclopedic

  • 1/3
    Views:
    28 715
    2 057
    892
  • Mod-01 Lec-14 Bounded Linear Operators in a Normed Space
  • Bounded Linear Operator Part-1 | Functional Analysis | Muhammad Tahir
  • Compact: Closed and Bounded | Primer to Heine Borel

Transcription

Generalization

Theorem[1] — If A : XY is a continuous linear bijection from a complete pseudometrizable topological vector space (TVS) onto a Hausdorff TVS that is a Baire space, then A : XY is a homeomorphism (and thus an isomorphism of TVSs).

Counterexample

This theorem may not hold for normed spaces that are not complete. For example, consider the space X of sequences x : N → R with only finitely many non-zero terms equipped with the supremum norm. The map T : X → X defined by

is bounded, linear and invertible, but T−1 is unbounded. This does not contradict the bounded inverse theorem since X is not complete, and thus is not a Banach space. To see that it's not complete, consider the sequence of sequences x(n) ∈ X given by

converges as n → ∞ to the sequence x(∞) given by

which has all its terms non-zero, and so does not lie in X.

The completion of X is the space of all sequences that converge to zero, which is a (closed) subspace of the p space(N), which is the space of all bounded sequences. However, in this case, the map T is not onto, and thus not a bijection. To see this, one need simply note that the sequence

is an element of , but is not in the range of .

See also

References

Bibliography

  • Köthe, Gottfried (1983) [1969]. Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. Vol. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2. MR 0248498. OCLC 840293704.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Renardy, Michael; Rogers, Robert C. (2004). An introduction to partial differential equations. Texts in Applied Mathematics 13 (Second ed.). New York: Springer-Verlag. pp. 356. ISBN 0-387-00444-0. (Section 8.2)
  • Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.
This page was last edited on 1 August 2023, at 20:27
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.