To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Behavioral neuroscience

From Wikipedia, the free encyclopedia

Behavioral neuroscience, also known as biological psychology,[1] biopsychology, or psychobiology,[2] is the application of the principles of biology to the study of physiological, genetic, and developmental mechanisms of behavior in humans and other animals.[3]

YouTube Encyclopedic

  • 1/5
    Views:
    753 336
    85 777
    2 042
    1 556
    10 397
  • Animal Behavior - CrashCourse Biology #25
  • Animal Behavior for Kids | Learn about innate behavior, learned behavior and more!
  • NYUCD - Behavioral and Cognitive Neuroscience: Animal Models of Memory - Dr. Wendy A. Suzuki
  • 2.18 - On the use of Animals in Cognitive Neuroscience Research
  • What is biological psychology or behavioral neuroscience?

Transcription

Behavior is action in response to a stimulus. My cat Cameo is now responding to both an external stimulus the sound of a bag of treats, and an internal stimulus her hunger, or at least her insatiable desire for treats. Sometimes animal behavior can seem really far out, but if you look closely enough, you can see how all behavior serves a purpose to help an animal mate, eat, avoid predators, and raise young. And since behaviors can come with advantages like these, natural selection acts on them just as it acts on physical traits ensuring the success of animals who engage in beneficial behaviors, while weeding out those that do stupid, dangerous or otherwise unhelpful stuff. The most beneficial behaviors are those that make an animal better at doing the only two things in the world that matter: eating and sex. Still, that doesn't mean all behavior is about just looking out for number one. It turns out some advantageous behavior is actually pretty selfless. More on that in a minute. But first, behavior is really just a product of a pair of factors: Morphology, or the physical structure of an animal and physiology, or the function of that morphology. Now, an animal's behavior is obviously limited by what its body is capable of doing for example, Cameo does not have opposable thumbs, so, much as she would like to get into the treat bag, by herself, she cannot. This limitation is strictly hereditary no cats can open treat bags with their thumbs because no cats have opposable thumbs. Though some cats do have thumbs. In the same way that a penguin can't fly to escape a predator; or a gazelle can't reach the same leaves as a giraffe can. Similarly, behavior is constrained by an animal's physiology. Like, Cameo's built for chasing down little critters and eating meat, not beds of lettuce. This is because her physiology, everything from her teeth to her digestive system, are geared for eating meat. If she pounced on and ate every blade of grass she came across... let's just say I would not want to be in charge of that litter box. Now the traits that make up an animal's morphology and physiology are often heritable, so we generally talk about selection acting on those traits. But as natural selection hones these traits, it's really selecting their associated behaviors. It's the USE of the trait, using wings and feathers to escape predators, or using a long neck to reach leaves, that provides the evolutionary advantage. Still, that doesn't mean all behavior is coded in an animal's genes some behaviors are learned. And even for animals that learn how to do things, natural selection has favored brain structures that are capable of learning. So one way or another, most behaviors have some genetic underpinning, and we call those behaviors adaptive. Problem is, it's not always obvious what the evolutionary advantages are for some of the nutty things that animals do. Like, why does a snapping turtle always stick out its tongue? How does a tiny Siberian hamster find its mate, miles across the unforgiving tundra? Why does a bower bird collect piles of garbage? To answer questions like those, we have to figure out what stimulus causes these behaviors, and what functions the behaviors serve. To do this, I'm going to need the help of one of the first animal behavior scientists ever, or ethologists, Niko Tinbergen. Tinbergen developed a set of four questions aimed at understanding animal behavior. The questions focus on how a behavior occurs, and why natural selection has favored this particular behavior. Determining how a behavior occurs actually involves two questions: One: what stimulus causes it? And two: what does the animal's body do in response to that stimulus? These are the causes that are closest to the specific behavior we're looking at, so they're called the proximate causes. In the case of the male Siberian hamster, the stimulus is a delicious smelling pheromone that the sexy female hamster releases when she's ready to mate. The male hamster's response, of course, is to scuttle, surprisingly quickly, over several miles if necessary to find and mate with her. So the proximate cause of this behavior was that the girl hamster signaled that she was ready to knock boots, and the male ran like crazy to get to the boot-knockin'. Asking the more complex question of why natural selection has favored this behavior requires asking two more questions: One: what about this behavior helps this animal survive and/or reproduce? And two: what is the evolutionary history of this behavior? These, as you can tell, are bigger-picture questions, and they show us the ultimate causes of the behavior. The answer to the first question, of course, is that the ability of a male hamster to detect and respond to the pheromones of an ovulating female is directly linked to his reproductive success! As for the second question, you can also see that male hamsters with superior pheromone detectors will be able to find females more successfully than other male hamsters, and thereby produce more offspring. So natural selection has honed this particular physical ability and behavior over generations of hamsters. So, who would have thought to ask these questions in the first place? And where's my chair? Niko Tinbergen was one third of a trifecta of revolutionary ethologists in the 20th century. Along with Austrians Karl von Frisch and Konrad Lorenz, he provided a foundation for studying animal behavior and applied these ideas to the study of specific behaviors and for that all three shared the Nobel Prize in 1973. You may have seen the famous photos of young graylag geese following obediently in a line behind a man. That was Lorenz, and his experiments first conducted in the 1930s introduced the world to imprinting, the formation of social bonds in infant animals, and the behavior that includes both learned and innate components. When he observed newly hatched ducklings and geese, he discovered that waterfowl in particular had no innate recognition of their mothers. In the case of graylag geese, he found the imprinting stimulus to be any nearby object moving away from the young! So when incubator-hatched goslings spent their first hours with Lorenz, not only did they follow him, but they showed no recognition of their real mother or other adults in their species! Unfortunately, Lorenz was also a member of the Nazi party from 1938 to 1943. And in response to some of his studies on degenerative features that arose in hybrid geese, Lorenz warned that it took only a small amount of "tainted blood" to have an influence on a "pure-blooded" race. Unsurprisingly, Nazi party leaders were quick to draw some insane conclusions from Lorenz's behavioral studies in the cause of what they called race hygiene. Lorenz never denied his Nazi affiliation but spent years trying to distance himself from the party and apologizing for getting caught up in that evil. Now how exactly does natural selection act on behavior out there in the world? That's where we turn to those two types of behavior that are the only things in the world that matter: eating and sex-having. Behavior associated with finding and eating food is known as foraging, which you've heard of, and natural selection can act on behaviors that allow animals to exploit food sources while using the least amount of energy possible this sweet spot is known as the optimal foraging model. And the alligator snapping turtle has optimal foraging all figured out. Rather than running around hunting down its prey, it simply sits in the water, and food comes to him. See, the alligator snapping turtle has a long, pink tongue divided into two segments, making it look like a tasty worm to a passing fish. In response to the stimulus of a passing fish, it sticks out its tongue out and wiggles it. Natural selection has, over many generations, acted not only on turtles with pinker and more wiggly tongues to catch more fish, it's also acted on those that best know how and when to wiggle those tongues to get the most food. So it's selecting both the physical trait and the behavior that best exploits it. And what could be sexier than a turtle's wiggly tongue dance? Well, how about sex? As we saw with our friend the horny Siberian hamster, some behaviors and their associated physical features are adapted to allow an animal to reproduce more, simply by being better at finding mates. But many times, animals of the same species live close together or in groups, and determining who in what group gets to mate creates some interesting behaviors and features. This is what sexual selection, is all about. Often, males of a species will find and defend a desirable habitat to raise young in, and females will choose a male based on their territory. But what about those species, and there are many of them, where the female picks a male not because of that, but because of how he dances, or even weirder, how much junk he's collected? Take the male bower bird. He builds an elaborate hut, or bower, out of twigs and bits of grass, then spends an enormous amount of time collecting stuff, sometimes piles of berries, and sometimes piles of pretty, blue, plastic crap. Ethologists believe that he's collecting the stuff to attract the female to check out his elaborate house. Once the female's been enticed to take a closer look, the male starts to sing songs and dance around, often mimicking other species, inside of his little house for her. Females will inspect a number of these bowers before choosing who to mate with. Now, doing more complex dances and having more blue objects in your bower scores bigger with females. And ethologists have shown that a higher level of problem solving, or intelligence, in males correlates to both of these activities. So yeah, it took some brawn to build that bower and collect all that junk, but chicks also dig nerds who can learn dances! So the bowerbird's brain is evolving in response to sexual selection by females. This intelligence likely also translates into other helpful behaviors like avoiding predators. So thanks to the evolution of behavior, we're really good at taking care of our nutritional and sexual needs. But what's confused scientists for a long time is why animals often look after others' needs. For instance, vampire bats in South America will literally regurgitate blood into the mouths of members of its clan who didn't get a meal that night. How do you explain animals who act altruistically like that? We actually did a whole SciShow episode on this very subject but basically, we can thank British scientist William Hamilton for coming up with an equation to explain how natural selection can simultaneously make animals fit and allow for the evolution of altruism. Hamilton found that the evolution of altruism was best understood at the level of larger communities, especially extended animal families. Basically, altruism can evolve if the benefit of a behavior is greater than its cost on an individual, because it helped the individual's relatives enough to make it worth it. Hamilton called this inclusive fitness, expanding Darwin's definition of fitness basically, how many babies somebody's making to include the offspring of relatives. So I guess the only question left is, if I forget to feed you two, who is going to regurgitate blood into the other one's mouth? Yeah, there's probably a reason that only happens with bats. Thank you for watching this episode of Crash Course Biology. Thank you to Cameo for being such a good kitty. Yeah, she finally gets her treats. There's a table of contents, of course. If you want to reinforce any of the knowledge that you gained today. If you have questions or ideas for us you can get in touch with us on Facebook or Twitter, or of course, in the comments below. We'll see you next time.

History

Behavioral neuroscience as a scientific discipline emerged from a variety of scientific and philosophical traditions in the 18th and 19th centuries. René Descartes proposed physical models to explain animal as well as human behavior. Descartes suggested that the pineal gland, a midline unpaired structure in the brain of many organisms, was the point of contact between mind and body. Descartes also elaborated on a theory in which the pneumatics of bodily fluids could explain reflexes and other motor behavior. This theory was inspired by moving statues in a garden in Paris.[4]

William James

Other philosophers also helped give birth to psychology. One of the earliest textbooks in the new field, The Principles of Psychology by William James, argues that the scientific study of psychology should be grounded in an understanding of biology.

The emergence of psychology and behavioral neuroscience as legitimate sciences can be traced from the emergence of physiology from anatomy, particularly neuroanatomy. Physiologists conducted experiments on living organisms, a practice that was distrusted by the dominant anatomists of the 18th and 19th centuries.[5] The influential work of Claude Bernard, Charles Bell, and William Harvey helped to convince the scientific community that reliable data could be obtained from living subjects.

Even before the 18th and 19th centuries, behavioral neuroscience was beginning to take form as far back as 1700 B.C.[6] The question that seems to continually arise is: what is the connection between the mind and body? The debate is formally referred to as the mind-body problem. There are two major schools of thought that attempt to resolve the mind–body problem; monism and dualism.[4] Plato and Aristotle are two of several philosophers who participated in this debate. Plato believed that the brain was where all mental thought and processes happened.[6] In contrast, Aristotle believed the brain served the purpose of cooling down the emotions derived from the heart.[4] The mind-body problem was a stepping stone toward attempting to understand the connection between the mind and body.

Another debate arose about localization of function or functional specialization versus equipotentiality which played a significant role in the development in behavioral neuroscience. As a result of localization of function research, many famous people found within psychology have come to various different conclusions. Wilder Penfield was able to develop a map of the cerebral cortex through studying epileptic patients along with Rassmussen.[4] Research on localization of function has led behavioral neuroscientists to a better understanding of which parts of the brain control behavior. This is best exemplified through the case study of Phineas Gage.

The term "psychobiology" has been used in a variety of contexts, emphasizing the importance of biology, which is the discipline that studies organic, neural and cellular modifications in behavior, plasticity in neuroscience, and biological diseases in all aspects, in addition, biology focuses and analyzes behavior and all the subjects it is concerned about, from a scientific point of view. In this context, psychology helps as a complementary, but important discipline in the neurobiological sciences. The role of psychology in this questions is that of a social tool that backs up the main or strongest biological science. The term "psychobiology" was first used in its modern sense by Knight Dunlap in his book An Outline of Psychobiology (1914).[7] Dunlap also was the founder and editor-in-chief of the journal Psychobiology. In the announcement of that journal, Dunlap writes that the journal will publish research "...bearing on the interconnection of mental and physiological functions", which describes the field of behavioral neuroscience even in its modern sense.[7]

Relationship to other fields of psychology and biology

In many cases, humans may serve as experimental subjects in behavioral neuroscience experiments; however, a great deal of the experimental literature in behavioral neuroscience comes from the study of non-human species, most frequently rats, mice, and monkeys. As a result, a critical assumption in behavioral neuroscience is that organisms share biological and behavioral similarities, enough to permit extrapolations across species. This allies behavioral neuroscience closely with comparative psychology, ethology, evolutionary biology, and neurobiology. Behavioral neuroscience also has paradigmatic and methodological similarities to neuropsychology, which relies heavily on the study of the behavior of humans with nervous system dysfunction (i.e., a non-experimentally based biological manipulation). Synonyms for behavioral neuroscience include biopsychology, biological psychology, and psychobiology.[8] Physiological psychology is a subfield of behavioral neuroscience, with an appropriately narrower definition.

Research methods

The distinguishing characteristic of a behavioral neuroscience experiment is that either the independent variable of the experiment is biological, or some dependent variable is biological. In other words, the nervous system of the organism under study is permanently or temporarily altered, or some aspect of the nervous system is measured (usually to be related to a behavioral variable).

Disabling or decreasing neural function

  • Lesions – A classic method in which a brain-region of interest is naturally or intentionally destroyed to observe any resulting changes such as degraded or enhanced performance on some behavioral measure. Lesions can be placed with relatively high accuracy "Thanks to a variety of brain 'atlases' which provide a map of brain regions in 3-dimensional "stereotactic coordinates.
    The part of the picture emphasized shows the lesion in the brain. This type of lesion can be removed through surgery.
    • Surgical lesions – Neural tissue is destroyed by removing it surgically.
    • Electrolytic lesions – Neural tissue is destroyed through the application of electrical shock trauma.
    • Chemical lesions – Neural tissue is destroyed by the infusion of a neurotoxin.
    • Temporary lesions – Neural tissue is temporarily disabled by cooling or by the use of anesthetics such as tetrodotoxin.
  • Transcranial magnetic stimulation – A new technique usually used with human subjects in which a magnetic coil applied to the scalp causes unsystematic electrical activity in nearby cortical neurons which can be experimentally analyzed as a functional lesion.
  • Synthetic ligand injection – A receptor activated solely by a synthetic ligand (RASSL) or Designer Receptor Exclusively Activated by Designer Drugs (DREADD), permits spatial and temporal control of G protein signaling in vivo. These systems utilize G protein-coupled receptors (GPCR) engineered to respond exclusively to synthetic small molecules ligands, like clozapine N-oxide (CNO), and not to their natural ligand(s). RASSL's represent a GPCR-based chemogenetic tool. These synthetic ligands upon activation can decrease neural function by G-protein activation. This can with Potassium attenuating neural activity.[9]
  • Optogenetic inhibition – A light activated inhibitory protein is expressed in cells of interest. Powerful millisecond timescale neuronal inhibition is instigated upon stimulation by the appropriate frequency of light delivered via fiber optics or implanted LEDs in the case of vertebrates,[10] or via external illumination for small, sufficiently translucent invertebrates.[11] Bacterial Halorhodopsins or Proton pumps are the two classes of proteins used for inhibitory optogenetics, achieving inhibition by increasing cytoplasmic levels of halides (Cl
    ) or decreasing the cytoplasmic concentration of protons, respectively.[12][13]

Enhancing neural function

  • Electrical stimulation – A classic method in which neural activity is enhanced by application of a small electric current (too small to cause significant cell death).
  • Psychopharmacological manipulations – A chemical receptor antagonist induces neural activity by interfering with neurotransmission. Antagonists can be delivered systemically (such as by intravenous injection) or locally (intracerebrally) during a surgical procedure into the ventricles or into specific brain structures. For example, NMDA antagonist AP5 has been shown to inhibit the initiation of long term potentiation of excitatory synaptic transmission (in rodent fear conditioning) which is believed to be a vital mechanism in learning and memory.[14]
  • Synthetic Ligand Injection – Likewise, Gq-DREADDs can be used to modulate cellular function by innervation of brain regions such as Hippocampus. This innervation results in the amplification of γ-rhythms, which increases motor activity.[15]
  • Transcranial magnetic stimulation – In some cases (for example, studies of motor cortex), this technique can be analyzed as having a stimulatory effect (rather than as a functional lesion).
  • Optogenetic excitation – A light activated excitatory protein is expressed in select cells. Channelrhodopsin-2 (ChR2), a light activated cation channel, was the first bacterial opsin shown to excite neurons in response to light,[16] though a number of new excitatory optogenetic tools have now been generated by improving and imparting novel properties to ChR2[17]

Measuring neural activity

  • Optical techniques – Optical methods for recording neuronal activity rely on methods that modify the optical properties of neurons in response to the cellular events associated with action potentials or neurotransmitter release.
    • Voltage sensitive dyes (VSDs) were among the earliest method for optically detecting neuronal activity. VSDs commonly changed their fluorescent properties in response to a voltage change across the neuron's membrane, rendering membrane sub-threshold and supra-threshold (action potentials) electrical activity detectable.[18] Genetically encoded voltage sensitive fluorescent proteins have also been developed.[19]
    • Calcium imaging relies on dyes[20] or genetically encoded proteins[21] that fluoresce upon binding to the calcium that is transiently present during an action potential.
    • Synapto-pHluorin is a technique that relies on a fusion protein that combines a synaptic vesicle membrane protein and a pH sensitive fluorescent protein. Upon synaptic vesicle release, the chimeric protein is exposed to the higher pH of the synaptic cleft, causing a measurable change in fluorescence.[22]
  • Single-unit recording – A method whereby an electrode is introduced into the brain of a living animal to detect electrical activity that is generated by the neurons adjacent to the electrode tip. Normally this is performed with sedated animals but sometimes it is performed on awake animals engaged in a behavioral event, such as a thirsty rat whisking a particular sandpaper grade previously paired with water in order to measure the corresponding patterns of neuronal firing at the decision point.[23]
  • Multielectrode recording – The use of a bundle of fine electrodes to record the simultaneous activity of up to hundreds of neurons.
  • Functional magnetic resonance imaging – fMRI, a technique most frequently applied on human subjects, in which changes in cerebral blood flow can be detected in an MRI apparatus and are taken to indicate relative activity of larger scale brain regions (i.e., on the order of hundreds of thousands of neurons).
  • PET brain scans can show chemical differences in the brain between addicts and non-addicts. The normal images in the bottom row come from non-addicts while people with addictions have scans that look more abnormal.
    Positron emission tomography - PET detects particles called photons using a 3-D nuclear medicine examination. These particles are emitted by injections of radioisotopes such as fluorine. PET imaging reveal the pathological processes which predict anatomic changes making it important for detecting, diagnosing and characterising many pathologies[24]
  • Electroencephalography – EEG, and the derivative technique of event-related potentials, in which scalp electrodes monitor the average activity of neurons in the cortex (again, used most frequently with human subjects). This technique uses different types of electrodes for recording systems such as needle electrodes and saline-based electrodes. EEG allows for the investigation of mental disorders, sleep disorders and physiology. It can monitor brain development and cognitive engagement.[25]
  • Functional neuroanatomy – A more complex counterpart of phrenology. The expression of some anatomical marker is taken to reflect neural activity. For example, the expression of immediate early genes is thought to be caused by vigorous neural activity. Likewise, the injection of 2-deoxyglucose prior to some behavioral task can be followed by anatomical localization of that chemical; it is taken up by neurons that are electrically active.
  • Magnetoencephalography – MEG shows the functioning of the human brain through the measurement of electromagnetic activity. Measuring the magnetic fields created by the electric current flowing within the neurons identifies brain activity associated with various human functions in real time, with millimeter spatial accuracy. Clinicians can noninvasively obtain data to help them assess neurological disorders and plan surgical treatments.

Genetic techniques

  • QTL mapping – The influence of a gene in some behavior can be statistically inferred by studying inbred strains of some species, most commonly mice. The recent sequencing of the genome of many species, most notably mice, has facilitated this technique.
  • Selective breeding – Organisms, often mice, may be bred selectively among inbred strains to create a recombinant congenic strain. This might be done to isolate an experimentally interesting stretch of DNA derived from one strain on the background genome of another strain to allow stronger inferences about the role of that stretch of DNA.
  • Genetic engineering – The genome may also be experimentally-manipulated; for example, knockout mice can be engineered to lack a particular gene, or a gene may be expressed in a strain which does not normally do so (the 'transgenic'). Advanced techniques may also permit the expression or suppression of a gene to occur by injection of some regulating chemical.

Measuring behavior

  • Fruit fly (Drosophila melanogaster) leg joints being tracked in 3D with Anipose.[26]
    Markerless pose estimation – The advancement of computer vision techniques in recent years have allowed for precise quantifications of animal movements without needing to fit physical markers onto the subject. On high-speed video captured in a behavioral assay, keypoints from the subject can be extracted frame-by-frame,[27] which is often useful to analyze in tandem with neural recordings/manipulations. Analyses can be conducted on how keypoints (i.e. parts of the animal) move within different phases of a particular behavior (on a short timescale),[28] throughout an animal's behavioral repertoire (longer timescale).[29] These keypoint changes can be compared with corresponding changes in neural activity.

Other research methods

Computational models - Using a computer to formulate real-world problems to develop solutions.[30] Although this method is often focused in computer science, it has begun to move towards other areas of study. For example, psychology is one of these areas. Computational models allow researchers in psychology to enhance their understanding of the functions and developments in nervous systems. Examples of methods include the modelling of neurons, networks and brain systems and theoretical analysis.[31] Computational methods have a wide variety of roles including clarifying experiments, hypothesis testing and generating new insights. These techniques play an increasing role in the advancement of biological psychology.[32]

Limitations and advantages

Different manipulations have advantages and limitations. Neural tissue destroyed as a primary consequence of a surgery, electric shock or neurotoxin can confound the results so that the physical trauma masks changes in the fundamental neurophysiological processes of interest. For example, when using an electrolytic probe to create a purposeful lesion in a distinct region of the rat brain, surrounding tissue can be affected: so, a change in behavior exhibited by the experimental group post-surgery is to some degree a result of damage to surrounding neural tissue, rather than by a lesion of a distinct brain region.[33][34] Most genetic manipulation techniques are also considered permanent.[34] Temporary lesions can be achieved with advanced in genetic manipulations, for example, certain genes can now be switched on and off with diet.[34] Pharmacological manipulations also allow blocking of certain neurotransmitters temporarily as the function returns to its previous state after the drug has been metabolized.[34]

Topic areas

In general, behavioral neuroscientists study similar themes and issues as academic psychologists, though limited by the need to use nonhuman animals. As a result, the bulk of literature in behavioral neuroscience deals with mental processes and behaviors that are shared across different animal models such as:

However, with increasing technical sophistication and with the development of more precise noninvasive methods that can be applied to human subjects, behavioral neuroscientists are beginning to contribute to other classical topic areas of psychology, philosophy, and linguistics, such as:

Behavioral neuroscience has also had a strong history of contributing to the understanding of medical disorders, including those that fall under the purview of clinical psychology and biological psychopathology (also known as abnormal psychology). Although animal models do not exist for all mental illnesses, the field has contributed important therapeutic data on a variety of conditions, including:

  • Parkinson's disease, a degenerative disorder of the central nervous system that often impairs motor skills and speech.
  • Huntington's disease, a rare inherited neurological disorder whose most obvious symptoms are abnormal body movements and a lack of coordination. It also affects a number of mental abilities and some aspects of personality.
  • Alzheimer's disease, a neurodegenerative disease that, in its most common form, is found in people over the age of 65 and is characterized by progressive cognitive deterioration, together with declining activities of daily living and by neuropsychiatric symptoms or behavioral changes.
  • Clinical depression, a common psychiatric disorder, characterized by a persistent lowering of mood, loss of interest in usual activities and diminished ability to experience pleasure.
  • Schizophrenia, a psychiatric diagnosis that describes a mental illness characterized by impairments in the perception or expression of reality, most commonly manifesting as auditory hallucinations, paranoid or bizarre delusions or disorganized speech and thinking in the context of significant social or occupational dysfunction.
  • Autism, a brain development disorder that impairs social interaction and communication, and causes restricted and repetitive behavior, all starting before a child is three years old.
  • Anxiety, a physiological state characterized by cognitive, somatic, emotional, and behavioral components. These components combine to create the feelings that are typically recognized as fear, apprehension, or worry.
  • Drug abuse, including alcoholism.

Awards

Nobel Laureates

The following Nobel Prize winners could reasonably be considered behavioral neuroscientists or neurobiologists.[by whom?] (This list omits winners who were almost exclusively neuroanatomists or neurophysiologists; i.e., those that did not measure behavioral or neurobiological variables.)

Kavli Prize in Neuroscience

See also

References

  1. ^ Breedlove, Watson, Rosenzweig, Biological Psychology: An Introduction to Behavioral and Cognitive Neuroscience, 6/e, ISBN 978-0-87893-705-9, p. 2
  2. ^ Psychobiology, Merriam-Webster's Online Dictionary
  3. ^ Thomas, R.K. (1993). "INTRODUCTION: A Biopsychology Festschrift in Honor of Lelon J. Peacock". Journal of General Psychology. 120 (1): 5.
  4. ^ a b c d Carlson, Neil (2007). Physiology of Behavior (9th ed.). Allyn and Bacon. pp. 11–14. ISBN 978-0-205-46724-2.
  5. ^ Shepherd, Gordon M. (1991). Foundations of the Neuron Doctrine. Oxford University Press. ISBN 0-19-506491-7.
  6. ^ a b "History of Neuroscience". Columbia University. Retrieved 2014-05-04.
  7. ^ a b Dewsbury, Donald (1991). "Psychobiology". American Psychologist. 46 (3): 198–205. doi:10.1037/0003-066x.46.3.198. PMID 2035930. S2CID 222054067.
  8. ^ S. Marc Breedlove, Mark Rosenzweig and Neil V. Watson (2007). Biological Psychology: An Introduction to Behavioral and Cognitive Neuroscience 6e. Sinauer Associates. ISBN 978-0-87893-705-9
  9. ^ Zhu, Hu (2014). "Silencing synapses with DREADDs". Neuron. 82 (4): 723–725. doi:10.1016/j.neuron.2014.05.002. PMC 4109642. PMID 24853931.
  10. ^ Schneider, M. Bret; Gradinaru, Viviana; Zhang, Feng; Deisseroth, Karl (2008). "Controlling Neuronal Activity". American Journal of Psychiatry. 165 (5): 562. doi:10.1176/appi.ajp.2008.08030444. PMID 18450936.
  11. ^ Zhang, Feng; Wang, Li-Ping; Brauner, Martin; Liewald, Jana F.; Kay, Kenneth; Watzke, Natalie; Wood, Phillip G.; Bamberg, Ernst; Nagel, Georg; Gottschalk, Alexander; Deisseroth, Karl (2007). "Multimodal fast optical interrogation of neural circuitry". Nature. 446 (7136): 633–639. Bibcode:2007Natur.446..633Z. doi:10.1038/nature05744. PMID 17410168. S2CID 4415339.
  12. ^ Chow, B. Y. et al. "High-performance genetically targetable optical neural silencing by light-driven proton pumps." Nature. Vol 463. 7 January 2010
  13. ^ Gradinaru, Viviana; Thompson, Kimberly R.; Deisseroth, Karl (2008). "ENpHR: A Natronomonas halorhodopsin enhanced for optogenetic applications". Brain Cell Biology. 36 (1–4): 129–139. doi:10.1007/s11068-008-9027-6. PMC 2588488. PMID 18677566.
  14. ^ Kim, Jeansok J.; Decola, Joseph P.; Landeira-Fernandez, Jesus; Fanselow, Michael S. (1991). "N-methyl-D-aspartate receptor antagonist APV blocks acquisition but not expression of fear conditioning". Behavioral Neuroscience. 105 (1): 126–133. doi:10.1037/0735-7044.105.1.126. PMID 1673846.
  15. ^ Ferguson, Susan (2012). "Grateful DREADDs: Engineered Receptors Reveal How Neural Circuits Regulate Behavior". Neuropsychopharmacology. 37 (1): 296–297. doi:10.1038/npp.2011.179. PMC 3238068. PMID 22157861.
  16. ^ Zhang, Feng; Wang, Li-Ping; Boyden, Edward S.; Deisseroth, Karl (2006). "Channelrhodopsin-2 and optical control of excitable cells". Nature Methods. 3 (10): 785–792. doi:10.1038/nmeth936. PMID 16990810. S2CID 15096826.
  17. ^ Gradinaru, Viviana; Zhang, Feng; Ramakrishnan, Charu; Mattis, Joanna; Prakash, Rohit; Diester, Ilka; Goshen, Inbal; Thompson, Kimberly R.; Deisseroth, Karl (2010). "Molecular and Cellular Approaches for Diversifying and Extending Optogenetics". Cell. 141 (1): 154–165. doi:10.1016/j.cell.2010.02.037. PMC 4160532. PMID 20303157.
  18. ^ Ebner, Timothy J.; Chen, Gang (1995). "Use of voltage-sensitive dyes and optical recordings in the central nervous system". Progress in Neurobiology. 46 (5): 463–506. doi:10.1016/0301-0082(95)00010-S. PMID 8532849. S2CID 17187595.
  19. ^ Siegel, Micah S.; Isacoff, Ehud Y. (1997). "A Genetically Encoded Optical Probe of Membrane Voltage". Neuron. 19 (4): 735–741. doi:10.1016/s0896-6273(00)80955-1. PMID 9354320. S2CID 11447982.
  20. ^ O'Donovan, Michael J.; Ho, Stephen; Sholomenko, Gerald; Yee, Wayne (1993). "Real-time imaging of neurons retrogradely and anterogradely labelled with calcium-sensitive dyes". Journal of Neuroscience Methods. 46 (2): 91–106. doi:10.1016/0165-0270(93)90145-H. PMID 8474261. S2CID 13373078.
  21. ^ Heim, Nicola; Griesbeck, Oliver (2004). "Genetically Encoded Indicators of Cellular Calcium Dynamics Based on Troponin C and Green Fluorescent Protein". Journal of Biological Chemistry. 279 (14): 14280–14286. doi:10.1074/jbc.M312751200. PMID 14742421.
  22. ^ Miesenböck, Gero; De Angelis, Dino A.; Rothman, James E. (1998). "Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins". Nature. 394 (6689): 192–195. Bibcode:1998Natur.394..192M. doi:10.1038/28190. PMID 9671304. S2CID 4320849.
  23. ^ von Heimendahl, Moritz; Itskov, Pavel M.; Arabzadeh, Ehsan; Diamond, Mathew E. (2007). "Neuronal Activity in Rat Barrel Cortex Underlying Texture Discrimination". PLOS Biology. 5 (11): e305. doi:10.1371/journal.pbio.0050305. PMC 2071938. PMID 18001152.
  24. ^ Ocampo, T.; Knight, K.; Dunleavy, R.; Shah, S. N. (2015). "Techniques, benefits, and challenges of PET-MR". Radiologic Technology. 86 (4): 393–412, quiz 413–6. PMID 25835405.
  25. ^ Sanei, S., & Chambers, J. A. (2013). EEG signal processing. John Wiley & Sons.
  26. ^ Karashchuk, Pierre; Rupp, Katie L.; Dickinson, Evyn S.; Walling-Bell, Sarah; Sanders, Elischa; Azim, Eiman; Brunton, Bingni W.; Tuthill, John C. (2021-09-28). "Anipose: A toolkit for robust markerless 3D pose estimation". Cell Reports. 36 (13): 109730. doi:10.1016/j.celrep.2021.109730. ISSN 2211-1247. PMC 8498918. PMID 34592148.
  27. ^ Mathis, Alexander; Mamidanna, Pranav; Cury, Kevin M.; Abe, Taiga; Murthy, Venkatesh N.; Mathis, Mackenzie Weygandt; Bethge, Matthias (September 2018). "DeepLabCut: markerless pose estimation of user-defined body parts with deep learning". Nature Neuroscience. 21 (9): 1281–1289. doi:10.1038/s41593-018-0209-y. ISSN 1546-1726. PMID 30127430. S2CID 52807326.
  28. ^ Syeda, Atika; Zhong, Lin; Tung, Renee; Long, Will; Pachitariu, Marius; Stringer, Carsen (2022-11-04). "Facemap: a framework for modeling neural activity based on orofacial tracking". pp. 2022.11.03.515121. doi:10.1101/2022.11.03.515121. S2CID 253371320.
  29. ^ Marshall, Jesse D.; Aldarondo, Diego E.; Dunn, Timothy W.; Wang, William L.; Berman, Gordon J.; Ölveczky, Bence P. (2021-02-03). "Continuous Whole-Body 3D Kinematic Recordings across the Rodent Behavioral Repertoire". Neuron. 109 (3): 420–437.e8. doi:10.1016/j.neuron.2020.11.016. ISSN 0896-6273. PMC 7864892. PMID 33340448.
  30. ^ Otago, U. o., n/d. Computational Modelling. [Online] Available at: http://www.otago.ac.nz/courses/otago032670.pdf
  31. ^ Churchland, P. S., & Sejnowski, T. J. (2016). The computational brain. MIT press.
  32. ^ Brodland, G. Wayne (2015). "How computational models can help unlock biological systems". Seminars in Cell & Developmental Biology. 47–48: 62–73. doi:10.1016/j.semcdb.2015.07.001. PMID 26165820.
  33. ^ Kirby, Elizabeth D.; Jensen, Kelly; Goosens, Ki A.; Kaufer, Daniela (19 July 2012). "Stereotaxic Surgery for Excitotoxic Lesion of Specific Brain Areas in the Adult Rat". Journal of Visualized Experiments (65): 4079. doi:10.3791/4079. PMC 3476400. PMID 22847556.
  34. ^ a b c d Abel, Ted; Lattal, K.Matthew (2001). "Molecular mechanisms of memory acquisition, consolidation and retrieval". Current Opinion in Neurobiology. 11 (2): 180–187. doi:10.1016/s0959-4388(00)00194-x. PMID 11301237. S2CID 23766473.

External links

Listen to this article (8 minutes)
Spoken Wikipedia icon
This audio file was created from a revision of this article dated 18 December 2006 (2006-12-18), and does not reflect subsequent edits.
This page was last edited on 26 March 2024, at 02:21
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.