To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Plancherel theorem

From Wikipedia, the free encyclopedia

In mathematics, the Plancherel theorem (sometimes called the Parseval–Plancherel identity[1]) is a result in harmonic analysis, proven by Michel Plancherel in 1910. It states that the integral of a function's squared modulus is equal to the integral of the squared modulus of its frequency spectrum. That is, if is a function on the real line, and is its frequency spectrum, then

A more precise formulation is that if a function is in both Lp spaces and , then its Fourier transform is in , and the Fourier transform map is an isometry with respect to the L2 norm. This implies that the Fourier transform map restricted to has a unique extension to a linear isometric map , sometimes called the Plancherel transform. This isometry is actually a unitary map. In effect, this makes it possible to speak of Fourier transforms of quadratically integrable functions.

Plancherel's theorem remains valid as stated on n-dimensional Euclidean space . The theorem also holds more generally in locally compact abelian groups. There is also a version of the Plancherel theorem which makes sense for non-commutative locally compact groups satisfying certain technical assumptions. This is the subject of non-commutative harmonic analysis.

The unitarity of the Fourier transform is often called Parseval's theorem in science and engineering fields, based on an earlier (but less general) result that was used to prove the unitarity of the Fourier series.

Due to the polarization identity, one can also apply Plancherel's theorem to the inner product of two functions. That is, if and are two functions, and denotes the Plancherel transform, then

and if and are furthermore functions, then
and
so

YouTube Encyclopedic

  • 1/5
    Views:
    1 286
    982
    61 349
    2 238
    26 726
  • Deriving The Plancherel Theorem
  • Parseval-Plancherel Identity | Normalization in Quantum Mechanics
  • Parseval's Theorem
  • Advanced Engineering Mathematics, Lecture 3.8: Pythagoras, Parseval, and Plancherel
  • Parseval's Theorem

Transcription

See also

References

  1. ^ Cohen-Tannoudji, Claude; Dupont-Roc, Jacques; Grynberg, Gilbert (1997). Photons and Atoms : Introduction to Quantum Electrodynamics. Wiley. p. 11. ISBN 0-471-18433-0.

External links

This page was last edited on 6 December 2023, at 05:24
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.