To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Babenko–Beckner inequality

From Wikipedia, the free encyclopedia

In mathematics, the Babenko–Beckner inequality (after Konstantin I. Babenko [ru] and William E. Beckner) is a sharpened form of the Hausdorff–Young inequality having applications to uncertainty principles in the Fourier analysis of Lp spaces. The (qp)-norm of the n-dimensional Fourier transform is defined to be[1]

In 1961, Babenko[2] found this norm for even integer values of q. Finally, in 1975, using Hermite functions as eigenfunctions of the Fourier transform, Beckner[3] proved that the value of this norm for all is

Thus we have the Babenko–Beckner inequality that

To write this out explicitly, (in the case of one dimension,) if the Fourier transform is normalized so that

then we have

or more simply

Main ideas of proof

Throughout this sketch of a proof, let

(Except for q, we will more or less follow the notation of Beckner.)

The two-point lemma

Let be the discrete measure with weight at the points Then the operator

maps to with norm 1; that is,

or more explicitly,

for any complex a, b. (See Beckner's paper for the proof of his "two-point lemma".)

A sequence of Bernoulli trials

The measure that was introduced above is actually a fair Bernoulli trial with mean 0 and variance 1. Consider the sum of a sequence of n such Bernoulli trials, independent and normalized so that the standard deviation remains 1. We obtain the measure which is the n-fold convolution of with itself. The next step is to extend the operator C defined on the two-point space above to an operator defined on the (n + 1)-point space of with respect to the elementary symmetric polynomials.

Convergence to standard normal distribution

The sequence converges weakly to the standard normal probability distribution with respect to functions of polynomial growth. In the limit, the extension of the operator C above in terms of the elementary symmetric polynomials with respect to the measure is expressed as an operator T in terms of the Hermite polynomials with respect to the standard normal distribution. These Hermite functions are the eigenfunctions of the Fourier transform, and the (qp)-norm of the Fourier transform is obtained as a result after some renormalization.

See also

References

  1. ^ Iwo Bialynicki-Birula. Formulation of the uncertainty relations in terms of the Renyi entropies. arXiv:quant-ph/0608116v2
  2. ^ K.I. Babenko. An inequality in the theory of Fourier integrals. Izv. Akad. Nauk SSSR, Ser. Mat. 25 (1961) pp. 531–542 English transl., Amer. Math. Soc. Transl. (2) 44, pp. 115–128
  3. ^ W. Beckner, Inequalities in Fourier analysis. Annals of Mathematics, Vol. 102, No. 6 (1975) pp. 159–182.
This page was last edited on 15 October 2023, at 00:47
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.