To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Theory of tides

From Wikipedia, the free encyclopedia

High and low tide in the Bay of Fundy

The theory of tides is the application of continuum mechanics to interpret and predict the tidal deformations of planetary and satellite bodies and their atmospheres and oceans (especially Earth's oceans) under the gravitational loading of another astronomical body or bodies (especially the Moon and Sun).

YouTube Encyclopedic

  • 1/5
    Views:
    1 682 867
    1 645 800
    522 423
    575
    951 189
  • Tides: Crash Course Astronomy #8
  • Ocean's Tides Explained
  • What Causes Tides?
  • Galileo’s theory of tides
  • How the tides REALLY work

Transcription

Y’know, if Shakespeare had been an astronomer, he’d have said that “there is a tide in the affairs of the Universe, and on such a full sea are we now afloat.” He would’ve been right. You might just think of tides as the ocean going in and out every day, but in fact what astronomers call tides are a subtle but inexorable force that have literally shaped most objects in the Universe. And to understand tides, we start with gravity. Gravity is a force, and it weakens with distance. An important thing to note is that we measure gravity from the center of mass of an object, not its surface. One way to think of the center of mass of an object is the average position in an object of all its mass. For an evenly distributed sphere, that’s it’s center. Right now, unless you’re an astronaut, you’re about 6400 kilometers from the center of the Earth. If you stand up, your head is a couple of meters farther away from the Earth’s center than your feet. Since gravity weakens with distance, the force of Earth’s gravity on your head is an eensy weensy bit less than it is on your feet. How much less? A mere 0.00005%. And that’s way too small for you to ever notice. But what if you were taller? Well, the taller you are, the farther your head is from the Earth’s center, and the weaker force it will feel. If you were, say, about 300 kilometers tall, the force of gravity would drop by about 10% at your head. That probably would be enough to notice, if you weren’t dying from asphyxiation and, y’know, being 300 kilometers tall. This change in the force of gravity over distance is what astronomers call the tidal force. When you have a massive object affecting another object with its gravity, its tidal force depends on several factors. For one thing, it depends on how strong the gravity is from the first object; the stronger the force of gravity, the stronger stronger the tidal force will be on the affected object. It also depends on how wide the affected object is. The wider it is, the more the force of gravity from the first object changes across it, and the bigger the tidal force. Finally, it depends on how far the affected object is from the first object. The farther away the affected object is, the lower the tidal force will be. Tides depend on gravity, and if gravity is weaker, so is the tidal force. The overall effect of the tidal force is to stretch an object. You’re applying a stronger force on one end than you are on the other, so you’re pulling harder on one end. That’ll stretch it! And this is where tidal forces become very important. Look at the Moon. It has gravity, but much less than the Earth because it’s less massive. It’s 380,000 kilometers away, so the gravitational force it has on you is pretty small. And you’re pretty small compared to that distance, just a couple of meters long from head to feet. But the Earth is big! It’s nearly 13,000 kilometers across. That means the side of the Earth facing the Moon is about 13,000 kilometers closer to the Moon than the other side of the Earth. This is a pretty big distance, enough for tides to become important. The side of the Earth facing the Moon is pulled harder by the Moon than the other side of the Earth, so the Earth stretches. It becomes ever so slightly football-shaped, like a sphere with two bulges, one pointing toward the Moon, and one pointing away. This is probably the weirdest thing about tidal forces. You might expect only one bulge, on the side of the Earth facing the Moon. But remember, we measure gravity from the centers of objects. The side of the Earth facing the Moon feels a stronger pull toward the Moon than the Earth’s center, so it’s pulled away from the center. But the side facing away from the Moon feels a weaker force toward the Moon than the Earth’s center. This means the center of the Earth is being pulled away from the far side. This is exactly the same as if the far side is being pulled away from the center, and that’s why you get two bulges on opposite sides of the Earth. The tidal force is therefore strongest on the sides of the Earth facing toward and away from the Moon, and weakest halfway in between them on each side. A lot of the Earth is covered in water, and water responds to this changing force, this stretching. The water bulges up where the tidal force is strongest, on opposite sides of the Earth. If there’s a beach on one of those spots, the water will cover it, and we say it’s high tide. If a beach is where the tidal force is low, the water’s been pulled away from it, and it’s low tide. But wait a second: The Earth is spinning! If you’re on the part of the Earth facing the Moon, you’re at high tide. Six hours later, a quarter of a day, the Earth’s rotation has swept you around to the spot where it’s low tide. Six hours after that you’re at high tide again, and then another six hours later you’re at low tide for the second time that day. Finally, a day after you started, you’re back at high tide once more. And that’s why we have two high tides and two low tides every day. Very generally speaking, the ocean tide causes the sea level to rise and fall by a meter or two, every day. Incidentally, the solid Earth can bulge as well. It’s not as fluid as water, but it can move. The tidal force stretches the solid Earth by about 30 centimeters. If you just sit in your house all day, you move up and down by about that much...twice! Like the saying goes, a rising tide lifts all… surfaces. The Earth’s spin has another effect. Lag in the water flow means the water can’t respond instantly to the tidal force from the Moon. The Earth’s spin actually sweeps the bulges forward a bit along the Earth. So picture this: the bulge nearest the Moon is actually a bit ahead of the Earth-Moon line. That bulge has mass; not a lot, but some. Since it has mass, it has gravity, and that pulls on the Moon. It pulls the Moon forward in its orbit a bit, like pulling on a dog’s leash, accelerating it. The Moon responds to this tug by going into a higher orbit: The Moon is actually moving away from the Earth! The rate of recession of the moon has been measured and it’s something like a few centimeters per year, roughly the same speed your fingernails grow. Now get this: the Moon has gravity. Just as the bulge is pulling the Moon ahead, the Moon is pulling the bulge back, slowing it down. Because of friction with the rest of the Earth, this slowing of the bulge is actually slowing the rotation of the Earth itself, making the day longer. The effect is small, but again it’s measurable. OK, let’s get a little change of perspective. Everything I’ve said about the Moon’s tidal effect on the Earth works the other way, too. The Moon feels tides from the Earth, and they’re pretty strong because the Earth is more massive and has more gravity than the Moon. Just like Earth, there are two tidal bulges on the Moon; one facing the Earth and one facing away. Long ago, the Moon was closer to the Earth, and spinning rapidly. The Moon’s tidal bulges didn’t align with the Earth, and the Earth’s gravity tugged on them, slowing the Moon’s spin and moving it farther away. As it moved farther away, the time it took to orbit once around the Earth increased: Its orbital period got longer. Eventually, the lengthening rotation of the Moon matched how long it took to go around the Earth. When that happened, the axis of the bulges pointed right at the Earth. That’s why the Moon only shows one face to us! It spins once per month, and goes around us once per month. If it didn’t spin at all, over that month we’d see the entire lunar surface. But since it does spin once per orbit, we only ever see one face. This is called tidal locking, and it’s worked on nearly every big moon in the solar system; tides from their home planet have matched their spin and orbital period. These moons all show the same face toward their planet! Now wait a second. If the Moon has gravity, which causes tides, and is the root cause behind all these shenanigans, what about the Sun? It’s even bigger than the Moon! Tides depends on the gravity from an object, and your distance from it. The Sun is far more massive than the Moon, but much farther away. These two effects largely cancel each other out, and when you do the math, you find the Sun’s tidal force on the Earth is just about half that of the Moon’s. The way the Sun’s tidal force and the Moon’s tidal force interact on Earth depends on their geometry, which changes as the Moon orbits us. At new Moon, the Earth, Moon, and Sun are in a line. The Moon’s tidal force aligns with the Sun’s, reinforcing it. This means we get an extra high high tide and an extra low low tide on Earth. We call this the spring tide. When the Moon is at first quarter, the tidal bulge from the Moon is 90° around from the Sun’s; high tide from the Moon overlaps low tide from the Sun. We get a slightly lower high tide, and a slightly higher low tide. We call those neap tides. The pattern repeats when the Moon is full; the Moon, Earth, and Sun fall along a line again, and we get spring tides. A week later the Moon has moved around, and we get neap tides again. Not only that, the Moon orbits the Earth on an ellipse. When it’s closest to us we feel a stronger effect. If that also happens at New or Full Moon, we get an added kick to the spring tides. This is called the proxigean tide, and can lead to flooding in low-lying areas. Unless you live on the coast, I bet you had no idea tides were so complex! Tides are universal; they work wherever there’s gravity. If two stars orbit each other, each raises a tide in the other. Just like the Earth and Moon, that can slow their spin and increase their separation. Many planets orbiting other stars may be tidally locked to those stars. Near a black hole, where the gravity is incredibly intense, the tides are so strong they would pull you like taffy into a long, thin string. Astronomers call this effect… spaghettification. No, seriously, that’s what we call it! Today you learned that tides are due to the changing force of gravity over distance. The strength of the tidal force from an object depends on the gravity of the object, and the size of and distance to the second object. Tides raise two bulges in an object, creating two high tides and two low tides per day on Earth. Tides have slowed the Earth’s rotation, moved the Moon away from the Earth, and locked the Moon’s rotation and orbit so that the Moon always has one side facing us. So. Tide goes in. Tide goes out. It turns out, I can explain that. Now you can too. Crash Course is produced in association with PBS Digital Studios. This episode was written by me, Phil Plait. The script was edited by Blake de Pastino, and our consultant is Dr. Michelle Thaller. It was co-directed by Nicholas Jenkins and Nicole Sweeney, and the graphics team is Thought Café.

History

Australian Aboriginal astronomy

The Yolngu people of northeastern Arnhem Land in the Northern Territory of Australia identified a link between the Moon and the tides, which they mythically attributed to the Moon filling with water and emptying out again.[1][2]

Classical era

The tides received relatively little attention in the civilizations around the Mediterranean Sea, as the tides there are relatively small, and the areas that experience tides do so unreliably.[3][4][5] A number of theories were advanced, however, from comparing the movements to breathing or blood flow to theories involving whirlpools or river cycles.[4] A similar "breathing earth" idea was considered by some Asian thinkers.[6] Plato reportedly believed that the tides were caused by water flowing in and out of undersea caverns.[3] Crates of Mallus attributed the tides to "the counter-movement (ἀντισπασμός) of the sea” and Apollodorus of Corcyra to "the refluxes from the Ocean".[7] An ancient Indian Purana text dated to 400-300 BC refers to the ocean rising and falling because of heat expansion from the light of the Moon.[a][8]

Ultimately the link between the Moon (and Sun) and the tides became known to the Greeks, although the exact date of discovery is unclear; references to it are made in sources such as Pytheas of Massilia in 325 BC and Pliny the Elder's Natural History in 77 AD. Although the schedule of the tides and the link to lunar and solar movements was known, the exact mechanism that connected them was unclear.[4] Classicists Thomas Little Heath claimed that both Pytheas and Posidonius connected the tides with the moon, "the former directly, the latter through the setting up of winds".[7] Seneca mentions in De Providentia the periodic motion of the tides controlled by the lunar sphere.[9] Eratosthenes (3rd century BC) and Posidonius (1st century BC) both produced detailed descriptions of the tides and their relationship to the phases of the Moon, Posidonius in particular making lengthy observations of the sea on the Spanish coast, although little of their work survived. The influence of the Moon on tides was mentioned in Ptolemy's Tetrabiblos as evidence of the reality of astrology.[3][10] Seleucus of Seleucia is thought to have theorized around 150 BC that tides were caused by the Moon as part of his heliocentric model.[11][12]

Aristotle, judging from discussions of his beliefs in other sources, is thought to have believed the tides were caused by winds driven by the Sun's heat, and he rejected the theory that the Moon caused the tides. An apocryphal legend claims that he committed suicide in frustration with his failure to fully understand the tides.[3] Heraclides also held "the sun sets up winds, and that these winds, when they blow, cause the high tide and, when they cease, the low tide".[7] Dicaearchus also "put the tides down to the direct action of the sun according to its position".[7] Philostratus discusses tides in Book Five of Life of Apollonius of Tyana (circa 217-238 AD); he was vaguely aware of a correlation of the tides with the phases of the Moon but attributed them to spirits moving water in and out of caverns, which he connected with the legend that spirits of the dead cannot move on at certain phases of the Moon.[b]

Medieval period

The Venerable Bede discusses the tides in The Reckoning of Time and shows that the twice-daily timing of tides is related to the Moon and that the lunar monthly cycle of spring and neap tides is also related to the Moon's position. He goes on to note that the times of tides vary along the same coast and that the water movements cause low tide at one place when there is high tide elsewhere.[13] However, he made no progress regarding the question of how exactly the Moon created the tides.[4]

Medieval rule-of-thumb methods for predicting tides were said to allow one "to know what Moon makes high water" from the Moon's movements.[14] Dante references the Moon's influence on the tides in his Divine Comedy.[15][3]

Medieval European understanding of the tides was often based on works of Muslim astronomers that became available through Latin translation starting from the 12th century.[16] Abu Ma'shar al-Balkhi, in his Introductorium in astronomiam, taught that ebb and flood tides were caused by the Moon.[16] Abu Ma'shar discussed the effects of wind and Moon's phases relative to the Sun on the tides.[16] In the 12th century, al-Bitruji contributed the notion that the tides were caused by the general circulation of the heavens.[16] Medieval Arabic astrologers frequently referenced the Moon's influence on the tides as evidence for the reality of astrology; some of their treatises on the topic influenced western Europe.[10][3] Some theorized that the influence was caused by lunar rays heating the ocean's floor.[5]

Modern era

Simon Stevin in his 1608 De spiegheling der Ebbenvloet (The Theory of Ebb and Flood) dismisses a large number of misconceptions that still existed about ebb and flood. Stevin pleads for the idea that the attraction of the Moon was responsible for the tides and writes in clear terms about ebb, flood, spring tide and neap tide, stressing that further research needed to be made.[17][18] In 1609, Johannes Kepler correctly suggested that the gravitation of the Moon causes the tides,[c] which he compared to magnetic attraction[20][4][21][22] basing his argument upon ancient observations and correlations.

In 1616, Galileo Galilei wrote Discourse on the Tides.[23] He strongly and mockingly rejects the lunar theory of the tides,[21][4] and tries to explain the tides as the result of the Earth's rotation and revolution around the Sun, believing that the oceans moved like water in a large basin: as the basin moves, so does the water.[24] Therefore, as the Earth revolves, the force of the Earth's rotation causes the oceans to "alternately accelerate and retardate".[25] His view on the oscillation and "alternately accelerated and retardated" motion of the Earth's rotation is a "dynamic process" that deviated from the previous dogma, which proposed "a process of expansion and contraction of seawater."[26] However, Galileo's theory was erroneous.[23] In subsequent centuries, further analysis led to the current tidal physics. Galileo tried to use his tidal theory to prove the movement of the Earth around the Sun. Galileo theorized that because of the Earth's motion, borders of the oceans like the Atlantic and Pacific would show one high tide and one low tide per day. The Mediterranean Sea had two high tides and low tides, though Galileo argued that this was a product of secondary effects and that his theory would hold in the Atlantic. However, Galileo's contemporaries noted that the Atlantic also had two high tides and low tides per day, which led to Galileo omitting this claim from his 1632 Dialogue.[27]

René Descartes theorized that the tides (alongside the movement of planets, etc.) were caused by aetheric vortices, without reference to Kepler's theories of gravitation by mutual attraction; this was extremely influential, with numerous followers of Descartes expounding on this theory throughout the 17th century, particularly in France.[28] However, Descartes and his followers acknowledged the influence of the Moon, speculating that pressure waves from the Moon via the aether were responsible for the correlation.[5][29][6][30]

Newton's three-body model

Newton, in the Principia, provides a correct explanation for the tidal force, which can be used to explain tides on a planet covered by a uniform ocean but which takes no account of the distribution of the continents or ocean bathymetry.[31]

Dynamic theory

While Newton explained the tides by describing the tide-generating forces and Daniel Bernoulli gave a description of the static reaction of the waters on Earth to the tidal potential, the dynamic theory of tides, developed by Pierre-Simon Laplace in 1775,[32] describes the ocean's real reaction to tidal forces.[33] Laplace's theory of ocean tides takes into account friction, resonance and natural periods of ocean basins. It predicts the large amphidromic systems in the world's ocean basins and explains the oceanic tides that are actually observed.[34]

The equilibrium theory—based on the gravitational gradient from the Sun and Moon but ignoring the Earth's rotation, the effects of continents, and other important effects—could not explain the real ocean tides.[35] Since measurements have confirmed the dynamic theory, many things have possible explanations now, like how the tides interact with deep sea ridges, and chains of seamounts give rise to deep eddies that transport nutrients from the deep to the surface.[36] The equilibrium tide theory calculates the height of the tide wave of less than half a meter, while the dynamic theory explains why tides are up to 15 meters.[37]

Satellite observations confirm the accuracy of the dynamic theory, and the tides worldwide are now measured to within a few centimeters.[38][39] Measurements from the CHAMP satellite closely match the models based on the TOPEX data.[40][41][42] Accurate models of tides worldwide are essential for research since the variations due to tides must be removed from measurements when calculating gravity and changes in sea levels.[43]

Laplace's tidal equations

A. Lunar gravitational potential: this depicts the Moon directly over 30° N (or 30° S) viewed from above the Northern Hemisphere. Note however that the moon is never more than about 28.6° north of the equator.
B. This view shows same potential from 180° from view A. Viewed from above the Northern Hemisphere. Red up, blue down.

In 1776, Laplace formulated a single set of linear partial differential equations for tidal flow described as a barotropic two-dimensional sheet flow. Coriolis effects are introduced as well as lateral forcing by gravity. Laplace obtained these equations by simplifying the fluid dynamics equations, but they can also be derived from energy integrals via Lagrange's equation.

For a fluid sheet of average thickness D, the vertical tidal elevation ζ, as well as the horizontal velocity components u and v (in the latitude φ and longitude λ directions, respectively) satisfy Laplace's tidal equations:[44]

where Ω is the angular frequency of the planet's rotation, g is the planet's gravitational acceleration at the mean ocean surface, a is the planetary radius, and U is the external gravitational tidal-forcing potential.

William Thomson (Lord Kelvin) rewrote Laplace's momentum terms using the curl to find an equation for vorticity. Under certain conditions this can be further rewritten as a conservation of vorticity.

Tidal analysis and prediction

Harmonic analysis

Spectrum of tides measured at Ft. Pulaski in 2012. Data downloaded from http://tidesandcurrents.noaa.gov/datums.html?id=8670870 Fourier transform computed with https://sourceforge.net/projects/amoreaccuratefouriertransform/

Laplace's improvements in theory were substantial, but they still left prediction in an approximate state. This position changed in the 1860s when the local circumstances of tidal phenomena were more fully brought into account by William Thomson's application of Fourier analysis to the tidal motions as harmonic analysis. Thomson's work in this field was further developed and extended by George Darwin, applying the lunar theory current in his time. Darwin's symbols for the tidal harmonic constituents are still used.

Darwin's harmonic developments of the tide-generating forces were later improved when A.T. Doodson, applying the lunar theory of E.W. Brown,[45] developed the tide-generating potential (TGP) in harmonic form, distinguishing 388 tidal frequencies.[46] Doodson's work was carried out and published in 1921.[47] Doodson devised a practical system for specifying the different harmonic components of the tide-generating potential, the Doodson numbers, a system still in use.

Since the mid-twentieth century further analysis has generated many more terms than Doodson's 388. About 62 constituents are of sufficient size to be considered for possible use in marine tide prediction, but sometimes many fewer can predict tides to useful accuracy. The calculations of tide predictions using the harmonic constituents are laborious, and from the 1870s to about the 1960s they were carried out using a mechanical tide-predicting machine, a special-purpose form of analog computer. More recently digital computers, using the method of matrix inversion, are used to determine the tidal harmonic constituents directly from tide gauge records.

Tidal constituents

Graph showing one line each for M 2, S 2, N 2, K 1, O 1, P 1, and one for their summation, with the X axis spanning slightly more than a single day
Tidal prediction summing constituent parts.

Tidal constituents combine to give an endlessly varying aggregate because of their different and incommensurable frequencies: the effect is visualized in an animation of the American Mathematical Society illustrating the way in which the components used to be mechanically combined in the tide-predicting machine. Amplitudes (half of peak-to-peak amplitude) of tidal constituents are given below for six example locations: Eastport, Maine (ME),[48] Biloxi, Mississippi (MS), San Juan, Puerto Rico (PR), Kodiak, Alaska (AK), San Francisco, California (CA), and Hilo, Hawaii (HI).

Semi-diurnal

Species Darwin
symbol
Period
(h)
Speed
(°/h)
Doodson coefficients Doodson
number
Amplitude at example location (cm) NOAA
order
n1 (L) n2 (m) n3 (y) n4 (mp) ME MS PR AK CA HI
Principal lunar semidiurnal M2 12.4206012 28.9841042 2 255.555 268.7 3.9 15.9 97.3 58.0 23.0 1
Principal solar semidiurnal S2 12 30 2 2 −2 273.555 42.0 3.3 2.1 32.5 13.7 9.2 2
Larger lunar elliptic semidiurnal N2 12.65834751 28.4397295 2 −1 1 245.655 54.3 1.1 3.7 20.1 12.3 4.4 3
Larger lunar evectional ν2 12.62600509 28.5125831 2 −1 2 −1 247.455 12.6 0.2 0.8 3.9 2.6 0.9 11
Variational μ2 12.8717576 27.9682084 2 −2 2 237.555 2.0 0.1 0.5 2.2 0.7 0.8 13
Lunar elliptical semidiurnal second-order 2N2 12.90537297 27.8953548 2 −2 2 235.755 6.5 0.1 0.5 2.4 1.4 0.6 14
Smaller lunar evectional λ2 12.22177348 29.4556253 2 1 −2 1 263.655 5.3 0.1 0.7 0.6 0.2 16
Larger solar elliptic T2 12.01644934 29.9589333 2 2 −3 272.555 3.7 0.2 0.1 1.9 0.9 0.6 27
Smaller solar elliptic R2 11.98359564 30.0410667 2 2 −1 274.555 0.9 0.2 0.1 0.1 28
Shallow water semidiurnal 2SM2 11.60695157 31.0158958 2 4 −4 291.555 0.5 31
Smaller lunar elliptic semidiurnal L2 12.19162085 29.5284789 2 1 −1 265.455 13.5 0.1 0.5 2.4 1.6 0.5 33
Lunisolar semidiurnal K2 11.96723606 30.0821373 2 2 275.555 11.6 0.9 0.6 9.0 4.0 2.8 35

Diurnal

Species Darwin
symbol
Period
(h)
Speed
(°/h)
Doodson coefficients Doodson
number
Amplitude at example location (cm) NOAA
order
n1 (L) n2 (m) n3 (y) n4 (mp) ME MS PR AK CA HI
Lunar diurnal K1 23.93447213 15.0410686 1 1 165.555 15.6 16.2 9.0 39.8 36.8 16.7 4
Lunar diurnal O1 25.81933871 13.9430356 1 −1 145.555 11.9 16.9 7.7 25.9 23.0 9.2 6
Lunar diurnal OO1 22.30608083 16.1391017 1 3 185.555 0.5 0.7 0.4 1.2 1.1 0.7 15
Solar diurnal S1 24 15 1 1 −1 164.555 1.0 0.5 1.2 0.7 0.3 17
Smaller lunar elliptic diurnal M1 24.84120241 14.4920521 1 155.555 0.6 1.2 0.5 1.4 1.1 0.5 18
Smaller lunar elliptic diurnal J1 23.09848146 15.5854433 1 2 −1 175.455 0.9 1.3 0.6 2.3 1.9 1.1 19
Larger lunar evectional diurnal ρ 26.72305326 13.4715145 1 −2 2 −1 137.455 0.3 0.6 0.3 0.9 0.9 0.3 25
Larger lunar elliptic diurnal Q1 26.868350 13.3986609 1 −2 1 135.655 2.0 3.3 1.4 4.7 4.0 1.6 26
Larger elliptic diurnal 2Q1 28.00621204 12.8542862 1 −3 2 125.755 0.3 0.4 0.2 0.7 0.4 0.2 29
Solar diurnal P1 24.06588766 14.9589314 1 1 −2 163.555 5.2 5.4 2.9 12.6 11.6 5.1 30

Long period

Species Darwin
symbol
Period
(h)
(days)
Speed
(°/h)
Doodson coefficients Doodson
number
Amplitude at example location (cm) NOAA
order
n1 (L) n2 (m) n3 (y) n4 (mp) ME MS PR AK CA HI
Lunar monthly Mm 661.3111655
27.554631896
0.5443747 0 1 −1 65.455 0.7 1.9 20
Solar semiannual Ssa 4383.076325
182.628180208
0.0821373 0 2 57.555 1.6 2.1 1.5 3.9 21
Solar annual Sa 8766.15265
365.256360417
0.0410686 0 1 56.555 5.5 7.8 3.8 4.3 22
Lunisolar synodic fortnightly MSf 354.3670666
14.765294442
1.0158958 0 2 −2 73.555 1.5 23
Lunisolar fortnightly Mf 327.8599387
13.660830779
1.0980331 0 2 75.555 1.4 2.0 0.7 24

Short period

Species Darwin
symbol
Period
(h)
Speed
(°/h)
Doodson coefficients Doodson
number
Amplitude at example location (cm) NOAA
order
n1 (L) n2 (m) n3 (y) n4 (mp) ME MS PR AK CA HI
Shallow water overtides of principal lunar M4 6.210300601 57.9682084 4 455.555 6.0 0.6 0.9 2.3 5
Shallow water overtides of principal lunar M6 4.140200401 86.9523127 6 655.555 5.1 0.1 1.0 7
Shallow water terdiurnal MK3 8.177140247 44.0251729 3 1 365.555 0.5 1.9 8
Shallow water overtides of principal solar S4 6 60 4 4 −4 491.555 0.1 9
Shallow water quarter diurnal MN4 6.269173724 57.4238337 4 −1 1 445.655 2.3 0.3 0.9 10
Shallow water overtides of principal solar S6 4 90 6 6 −6 * 0.1 12
Lunar terdiurnal M3 8.280400802 43.4761563 3 355.555 0.5 32
Shallow water terdiurnal 2MK3 8.38630265 42.9271398 3 −1 345.555 0.5 0.5 1.4 34
Shallow water eighth diurnal M8 3.105150301 115.9364166 8 855.555 0.5 0.1 36
Shallow water quarter diurnal MS4 6.103339275 58.9841042 4 2 −2 473.555 1.8 0.6 1.0 37

Doodson numbers

In order to specify the different harmonic components of the tide-generating potential, Doodson devised a practical system which is still in use, involving what are called the Doodson numbers based on the six Doodson arguments or Doodson variables. The number of different tidal frequency components is large, but each corresponds to a specific linear combination of six frequencies using small-integer multiples, positive or negative. In principle, these basic angular arguments can be specified in numerous ways; Doodson's choice of his six "Doodson arguments" has been widely used in tidal work. In terms of these Doodson arguments, each tidal frequency can then be specified as a sum made up of a small integer multiple of each of the six arguments. The resulting six small integer multipliers effectively encode the frequency of the tidal argument concerned, and these are the Doodson numbers: in practice all except the first are usually biased upwards by +5 to avoid negative numbers in the notation. (In the case that the biased multiple exceeds 9, the system adopts X for 10, and E for 11.)[49]

The Doodson arguments are specified in the following way, in order of decreasing frequency:[49]

is mean Lunar time, the Greenwich hour angle of the mean Moon plus 12 hours.
is the mean longitude of the Moon.
is the mean longitude of the Sun.
is the longitude of the Moon's mean perigee.
is the negative of the longitude of the Moon's mean ascending node on the ecliptic.
or is the longitude of the Sun's mean perigee.

In these expressions, the symbols , , and refer to an alternative set of fundamental angular arguments (usually preferred for use in modern lunar theory), in which:-

is the mean anomaly of the Moon (distance from its perigee).
is the mean anomaly of the Sun (distance from its perigee).
is the Moon's mean argument of latitude (distance from its node).
is the Moon's mean elongation (distance from the sun).

It is possible to define several auxiliary variables on the basis of combinations of these.

In terms of this system, each tidal constituent frequency can be identified by its Doodson numbers. The strongest tidal constituent "M2" has a frequency of 2 cycles per lunar day, its Doodson numbers are usually written 255.555, meaning that its frequency is composed of twice the first Doodson argument, and zero times all of the others. The second strongest tidal constituent "S2" is influenced by the sun, and its Doodson numbers are 273.555, meaning that its frequency is composed of twice the first Doodson argument, +2 times the second, -2 times the third, and zero times each of the other three.[50] This aggregates to the angular equivalent of mean solar time +12 hours. These two strongest component frequencies have simple arguments for which the Doodson system might appear needlessly complex, but each of the hundreds of other component frequencies can be briefly specified in a similar way, showing in the aggregate the usefulness of the encoding.

See also

Notes

  1. ^ In all the oceans the water remains at all times the same in quantity, and never, increases or diminishes; but like the water in a caldron, which, in consequence of its combination with heat, expands, so the waters of the ocean swell with the increase of the moon. The waters, although really neither more nor less, dilate or contract as the moon increases or wanes in the light and dark fortnights. - The Vishnu Purana book II ch. IV
  2. ^ Now I myself have seen among the Celts the ocean tides just as they are described. After making various conjectures about why so vast a bulk of waters recedes and advances, I have come to the conclusion that Apollonius discerned the real truth. For in one of his letters to the Indians he says that the ocean is driven by submarine influences or spirits out of several chasms which the earth afford both underneath and around it, to advance outwards, and to recede again, whenever the influence or spirit, like the breath of our bodies, gives way and recedes. And this theory is confirmed by the course run by diseases in Gadeira, for at the time of high water the souls of the dying do not quit the bodies, and this would hardly happen, he says, unless the influence or spirit I have spoken of was also advancing towards the land. They also tell you of certain phenomena of the ocean in connection with the phases of the moon, according as it is born and reaches fullness and wanes. These phenomena I verified, for the ocean exactly keeps pace with the size of the moon, decreasing and increasing with her. - Philostratus, The Life of Apollonius of Tyana, V
  3. ^ "Orbis virtutis tractoriæ, quæ est in Luna, porrigitur utque ad Terras, & prolectat aquas sub Zonam Torridam, … Celeriter vero Luna verticem transvolante, cum aquæ tam celeriter sequi non possint, fluxus quidem fit Oceani sub Torrida in Occidentem, … " ("The sphere of the lifting power, which is [centered] in the moon, is extended as far as to the earth and attracts the waters under the torrid zone, … However the moon flies swiftly across the zenith; because the waters cannot follow so quickly, the tide of the ocean under the torrid [zone] is indeed made to the west, …")[19]

References

  1. ^ "Moon". Australian Indigenous Astronomy. Retrieved 8 October 2020.
  2. ^ ""Bridging the Gap" through Australian Cultural Astronomy". Archaeoastronomy & Ethnoastronomy – Building Bridges Between Cultures: 282–290. 2011.
  3. ^ a b c d e f Tabarroni, G. (1989). "The tides and Newton". Memorie della Società Astronomia Italiana. 60: 770–777. Bibcode:1989MmSAI..60..769T. Retrieved 27 December 2020.
  4. ^ a b c d e f Marmer, H. A. (March 1922). "The Problems of the Tide". The Scientific Monthly. 14 (3): 209–222.
  5. ^ a b c Pugh, David T. (28 December 1987). Tides, Surges and Mean Sea-Level (PDF). JOHN WILEY & SONS. pp. 2–4. ISBN 047191505X. Retrieved 27 December 2020.
  6. ^ a b "Understanding Tides—From Ancient Beliefs toPresent-day Solutions to the Laplace Equations" (PDF). Vol. 33, no. 2. SIAM News.
  7. ^ a b c d Heath, Thomas Little (1913). Aristarchus of Samos, the ancient Copernicus. Gerstein - University of Toronto. Oxford : Clarendon Press. pp. 306–307.
  8. ^ Cartwright, David Edgar (1999). Tides: A Scientific History. Cambridge University Press. p. 6. ISBN 9780521797467. Retrieved 28 December 2020.
  9. ^ Seneca, De Providentia, section IV
  10. ^ a b Cartwright, David E. (2001). "On the Origins of Knowledge of the Sea Tides from Antiquity to the Thirteenth Century". Earth Sciences History. 20 (2): 105–126. Bibcode:2001ESHis..20..105C. doi:10.17704/eshi.20.2.m23118527q395675. JSTOR 24138749. Retrieved 27 December 2020.
  11. ^ Lucio Russo, Flussi e riflussi, Feltrinelli, Milano, 2003, ISBN 88-07-10349-4.
  12. ^ Van der Waerden, B. L. (1987). "The Heliocentric System in Greek, Persian and Hindu Astronomy". Annals of the New York Academy of Sciences. 500 (1): 525–545. Bibcode:1987NYASA.500..525V. doi:10.1111/j.1749-6632.1987.tb37224.x. S2CID 222087224.
  13. ^ Bede (2004). The Reckoning of Time. Translated by Faith Wallis. Liverpool University Press. pp. 64–65. ISBN 978-0-85323-693-1.
  14. ^ HUGHES, PAUL. "A STUDY IN THE DEVELOPMENT OF PRIMITIVE AND MODERN TIDE TABLES" (PDF). PhD Thesis, Liverpool John Moores University. Retrieved 27 December 2020.
  15. ^ Inferno XVI 82-83
  16. ^ a b c d Marina Tolmacheva (2014). Glick, Thomas F. (ed.). Geography, Chorography. Routledge. p. 188. ISBN 978-1135459321. {{cite book}}: |work= ignored (help)
  17. ^ Simon Stevin – Flanders Marine Institute (pdf, in Dutch)
  18. ^ Palmerino, The Reception of the Galilean Science of Motion in Seventeenth-Century Europe, pp. 200 op books.google.nl
  19. ^ Johannes Kepler, Astronomia nova … (1609), p. 5 of the Introductio in hoc opus (Introduction to this work). From page 5:
  20. ^ Johannes Kepler, Astronomia nova ... (1609), p. 5 of the Introductio in hoc opus
  21. ^ a b Popova, Maria (27 December 2019). "How Kepler Invented Science Fiction ... While Revolutionizing Our Understanding of the Universe". Brain Pickings. Retrieved 27 December 2020.
  22. ^ Eugene, Hecht (2019). "Kepler and the origins of the theory of gravity". American Journal of Physics. 87 (3): 176–185. Bibcode:2019AmJPh..87..176H. doi:10.1119/1.5089751. S2CID 126889093.
  23. ^ a b Rice University: Galileo's Theory of the Tides, by Rossella Gigli, retrieved 10 March 2010
  24. ^ Tyson, Peter (29 October 2002). "Galileo's Big Mistake". NOVA. PBS. Retrieved 19 February 2014.
  25. ^ Palmieri, Paolo (1998). Re-examining Galileo's Theory of Tides. Springer-Verlag. p. 229.
  26. ^ Palmeri, Paolo (1998). Re-examining Galileo's Theory of Tides. Springer-Verlag. p. 227.
  27. ^ Naylor, Ron (2007). "Galileo's Tidal Theory". Isis. 98 (1): 1–22. Bibcode:2007Isis...98....1N. doi:10.1086/512829. PMID 17539198. S2CID 46174715.
  28. ^ Aiton, E.J. (1955). "Descartes's theory of the tides". Annals of Science. 11 (4): 337–348. doi:10.1080/00033795500200335.
  29. ^ "Voltaire, Letter XIV". Archived from the original on 13 April 2021. Retrieved 28 December 2020.
  30. ^ Cartwright, David Edgar (1999). Tides: A Scientific History. Cambridge University Press. p. 31. ISBN 9780521797467. Retrieved 28 December 2020.
  31. ^ "Static Tides – the equilibrium Theory". Archived from the original on 10 April 2014. Retrieved 14 April 2014.
  32. ^ "Short notes on the Dynamical theory of Laplace". 20 November 2011. Archived from the original on 2 April 2015. Retrieved 31 March 2015.
  33. ^ http://faculty.washington.edu/luanne/pages/ocean420/notes/tidedynamics.pdf [bare URL PDF]
  34. ^ http://ocean.kisti.re.kr/downfile/volume/kess/JGGHBA/2009/v30n5/JGGHBA_2009_v30n5_671.pdf [bare URL PDF]
  35. ^ Bryden, I.G. (2003). "Tidal Power Systems", in Meyers, R.A. (ed.) Encyclopedia of Physical Science and Technology. Aberdeen: Academic Press, p. 753. doi:10.1016/b0-12-227410-5/00778-x
  36. ^ Floor Anthoni. "Tides". Seafriends.org.nz. Retrieved 2 June 2012.
  37. ^ "The Cause & Nature of Tides".
  38. ^ "Scientific Visualization Studio TOPEX/Poseidon images". Svs.gsfc.nasa.gov. Retrieved 2 June 2012.
  39. ^ "TOPEX/Poseidon Western Hemisphere: Tide Height Model : NASA/Goddard Space Flight Center Scientific Visualization Studio : Free Download & Streaming : Internet Archive". 15 June 2000.
  40. ^ "TOPEX data used to model actual tides for 15 days from the year 2000". 15 June 2000. Archived from the original on 18 September 2015. Retrieved 14 September 2015.
  41. ^ http://www.geomag.us/info/Ocean/m2_CHAMP+longwave_SSH.swf
  42. ^ "OSU Tidal Data Inversion". Volkov.oce.orst.edu. Archived from the original on 22 October 2012. Retrieved 2 June 2012.
  43. ^ "Dynamic and residual ocean tide analysis for improved GRACE de-aliasing (DAROTA)". Archived from the original on 2 April 2015.
  44. ^ "The Laplace Tidal Equations and Atmospheric Tides" (PDF).[permanent dead link]
  45. ^ Cartwright, David Edgar (1999). Tides: A Scientific History. Cambridge University Press. pp. 163–164. ISBN 9780521797467.
  46. ^ S Casotto, F Biscani, "A fully analytical approach to the harmonic development of the tide-generating potential accounting for precession, nutation, and perturbations due to figure and planetary terms", AAS Division on Dynamical Astronomy, April 2004, vol.36(2), 67.
  47. ^ A T Doodson (1921), "The Harmonic Development of the Tide-Generating Potential", Proceedings of the Royal Society of London. Series A, Vol. 100, No. 704 (1 December 1921), pp. 305–329.
  48. ^ NOAA. "Eastport, ME Tidal Constituents". NOAA. Retrieved 22 May 2012.
  49. ^ a b Melchior, P. (1971). "Precession-nutations and tidal potential". Celestial Mechanics. 4 (2): 190–212. Bibcode:1971CeMec...4..190M. doi:10.1007/BF01228823. S2CID 126219362. and T D Moyer (2003) already cited.
  50. ^ See for example Melchior (1971), already cited, at p.191.

External links

This page was last edited on 19 May 2024, at 05:38
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.