To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Modular Ocean Model

From Wikipedia, the free encyclopedia

Modular Ocean Model (MOM)
Developer(s)NOAA/GFDL
Initial releaseDecember 5, 1990; 30 years ago (1990-12-05) (MOM1)
Stable release
5.1.0 / March 25, 2014; 7 years ago (2014-03-25)
Preview release
MOM6
Written inFortran
TypeComputer simulation
LicenseGNU General Public License
Websitegfdl.noaa.gov/mom-ocean-model

The Modular Ocean Model (MOM) is a three-dimensional ocean circulation model designed primarily for studying the ocean climate system. The model is developed and supported primarily by researchers at the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory (NOAA/GFDL) in Princeton, NJ, USA.

Overview

MOM has traditionally been a level-coordinate ocean model, in which the ocean is divided into boxes whose bottoms are located at fixed depths. Such a representation makes it easy to solve the momentum equations and the well-mixed, weakly stratified layer known as the ocean mixed layer near the ocean surface. However, level coordinate models have problems when it comes to the representation of thin bottom boundary layers (Winton et al., 1998) and thick sea ice. Additionally, because mixing in the ocean interior is largely along lines of constant potential density rather than along lines of constant depth, mixing must be rotated relative to the coordinate grid- a process that can be computationally expensive. By contrast, in codes which represent the ocean in terms of constant-density layers (which represent the flow in the ocean interior much more faithfully)- representation of the ocean mixed layer becomes a challenge.

MOM3, MOM4, and MOM5 are used as a code base for the ocean component of the GFDL coupled models used in the IPCC assessment reports, including the GFDL CM2.X physical climate model series and the ESM2M Earth System Model. Versions of MOM have been used in hundreds of scientific papers by authors around the world. MOM4 is used as the basis for the El Nino prediction system employed by the National Centers for Environmental Prediction.

History

MOM owes its genesis to work at GFDL in the late 1960s by Kirk Bryan and Mike Cox. This code, along with a version generated at GFDL and UCLA/NCAR by Bert Semtner, is the ancestor of many of the level-coordinate ocean model codes run around the world today. In the late 1980s, Ron Pacanowski, Keith Dixon, and Tony Rosati at GFDL rewrote the Bryan-Cox-Semtner code in a modular form, enabling different options and configurations to be more easily generated and new physical parameterizations to be more easily included. This version, released on December 5, 1990, became known as Modular Ocean Model v1.0 (MOM1).[1] Further development by Pacanowski, aided by Charles Goldberg and encouraged by community feedback, led to the release of v2.0 (MOM2) in 1995. Pacanowski and Stephen Griffies released v3.0 (MOM3) in 1999. Griffies, Matthew Harrison, Rosati and Pacanowski, with considerable input from a scientific community of hundreds of users, resulted in significant evolution of the code released as v4.0 (MOM4) in 2003. An update, v4.1 (MOM4p1) was released by Griffies in 2009, as was the latest version v5.0 (MOM5), which was released in 2012.

See also

References

  1. ^ "Modular Ocean Model version 1". GFDL. Retrieved 2019-04-12.

External links

This page was last edited on 19 April 2021, at 08:57
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.