To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Sverdrup balance

From Wikipedia, the free encyclopedia

The Sverdrup balance, or Sverdrup relation, is a theoretical relationship between the wind stress exerted on the surface of the open ocean and the vertically integrated meridional (north-south) transport of ocean water.

YouTube Encyclopedic

  • 1/5
    Views:
    6 551
    54 643
    19 951
    529
    352
  • Currents 3 Ekman Spiral Western Intensification
  • Ocean Currents (Part 5): Ekman Transport & Upwelling / Downwelling
  • TEDxObraztsovaSt - Harald Sverdrup - Convergence and contraction at the end of the golden age
  • Sverdrup Lecture: OS53F. Deep Margins Under Pressure - 2012 AGU Fall Meeting
  • CHELTON Jan22 2015 Mesoscale and Submesoscale Ekman Pumping

Transcription

History

Aside from the oscillatory motions associated with tidal flow, there are two primary causes of large scale flow in the ocean: (1) thermohaline processes, which induce motion by introducing changes at the surface in temperature and salinity, and therefore in seawater density, and (2) wind forcing. In the 1940s, when Harald Sverdrup was thinking about calculating the gross features of ocean circulation, he chose to consider exclusively the wind stress component of the forcing. As he says in his 1947 paper, in which he presented the Sverdrup relation, this is probably the more important of the two. After making the assumption that frictional dissipation is negligible, Sverdrup obtained the simple result that the meridional mass transport (the Sverdrup transport) is proportional to the curl of the wind stress. This is known as the Sverdrup relation;

.

Here,

is the rate of change of the Coriolis parameter, f, with meridional distance;
is the vertically integrated meridional mass transport including the geostrophic interior mass transport and the Ekman mass transport;
is the unit vector in the vertical direction;
is the wind stress vector.

Physical interpretation

Sverdrup balance may be thought of as a consistency relationship for flow which is dominated by the Earth's rotation. Such flow will be characterized by weak rates of spin compared to that of the earth. Any parcel at rest with respect to the surface of the earth must match the spin of the earth underneath it. Looking down on the earth at the north pole, this spin is in a counterclockwise direction, which is defined as positive rotation or vorticity. At the south pole it is in a clockwise direction, corresponding to negative rotation. Thus to move a parcel of fluid from the south to the north without causing it to spin, it is necessary to add sufficient (positive) rotation so as to keep it matched with the rotation of the earth underneath it. The left-hand side of the Sverdrup equation represents the motion required to maintain this match between the absolute vorticity of a water column and the planetary vorticity, while the right represents the applied force of the wind.

Derivation

The Sverdrup relation can be derived from the linearized barotropic vorticity equation for steady motion:

.

Here is the geostrophic interior y-component (northward) and is the z-component (upward) of the water velocity. In words, this equation says that as a vertical column of water is squashed, it moves toward the Equator; as it is stretched, it moves toward the pole. Assuming, as did Sverdrup, that there is a level below which motion ceases, the vorticity equation can be integrated from this level to the base of the Ekman surface layer to obtain:

,

where is seawater density, is the geostrophic meridional mass transport and is the vertical velocity at the base of the Ekman layer.

The driving force behind the vertical velocity is the Ekman transport, which in the Northern (Southern) hemisphere is to the right (left) of the wind stress; thus a stress field with a positive (negative) curl leads to Ekman divergence (convergence), and water must rise from beneath to replace the old Ekman layer water. The expression for this Ekman pumping velocity is

,

which, when combined with the previous equation and adding the Ekman transport, yields the Sverdrup relation.

Further development

In 1948 Henry Stommel proposed a circulation for the entire ocean depth by starting with the same equations as Sverdrup but adding bottom friction, and showed that the variation in Coriolis parameter with latitude results in a narrow western boundary current in ocean basins. Walter Munk in 1950 combined the results of Rossby (eddy viscosity), Sverdrup (upper ocean wind driven flow) and Stommel (western boundary current flow) and proposed a complete solution for the ocean circulation.

References

  • Sverdrup, H.U. (November 1947). "Wind-Driven Currents in a Baroclinic Ocean; with Application to the Equatorial Currents of the Eastern Pacific". Proc. Natl. Acad. Sci. U.S.A. 33 (11): 318–26. Bibcode:1947PNAS...33..318S. doi:10.1073/pnas.33.11.318. PMC 1079064. PMID 16588757.
  • Gill, A.E. (1982). Atmosphere-Ocean Dynamics. Academic Press. ISBN 978-0-12-283522-3.

External links

This page was last edited on 17 February 2024, at 07:01
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.