To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Kleiman's theorem

From Wikipedia, the free encyclopedia

In algebraic geometry, Kleiman's theorem, introduced by Kleiman (1974), concerns dimension and smoothness of scheme-theoretic intersection after some perturbation of factors in the intersection.

Precisely, it states:[1] given a connected algebraic group G acting transitively on an algebraic variety X over an algebraically closed field k and morphisms of varieties, G contains a nonempty open subset such that for each g in the set,

  1. either is empty or has pure dimension , where is ,
  2. (Kleiman–Bertini theorem) If are smooth varieties and if the characteristic of the base field k is zero, then is smooth.

Statement 1 establishes a version of Chow's moving lemma:[2] after some perturbation of cycles on X, their intersection has expected dimension.

Sketch of proof

We write for . Let be the composition that is followed by the group action .

Let be the fiber product of and ; its set of closed points is

.

We want to compute the dimension of . Let be the projection. It is surjective since acts transitively on X. Each fiber of p is a coset of stabilizers on X and so

.

Consider the projection ; the fiber of q over g is and has the expected dimension unless empty. This completes the proof of Statement 1.

For Statement 2, since G acts transitively on X and the smooth locus of X is nonempty (by characteristic zero), X itself is smooth. Since G is smooth, each geometric fiber of p is smooth and thus is a smooth morphism. It follows that a general fiber of is smooth by generic smoothness.

Notes

  1. ^ Fulton (1998, Appendix B. 9.2.)
  2. ^ Fulton (1998, Example 11.4.5.)

References

  • Eisenbud, David; Harris, Joe (2016), 3264 and All That: A Second Course in Algebraic Geometry, Cambridge University Press, ISBN 978-1107602724
  • Kleiman, Steven L. (1974), "The transversality of a general translate", Compositio Mathematica, 28: 287–297, MR 0360616
  • Fulton, William (1998), Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 2 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-62046-4, MR 1644323


This page was last edited on 9 November 2019, at 06:21
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.