To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Projection (mathematics)

From Wikipedia, the free encyclopedia

In mathematics, a projection is a mapping of a set (or other mathematical structure) into a subset (or sub-structure), which is equal to its square for mapping composition, i.e., which is idempotent. The restriction to a subspace of a projection is also called a projection, even if the idempotence property is lost. An everyday example of a projection is the casting of shadows onto a plane (sheet of paper): the projection of a point is its shadow on the sheet of paper, and the shadow of a point on the sheet of paper is that point itself (idempotency). The shadow of a three-dimensional sphere is a closed disk. Originally, the notion of projection was introduced in Euclidean geometry to denote the projection of the three-dimensional Euclidean space onto a plane in it, like the shadow example. The two main projections of this kind are:

  • The projection from a point onto a plane or central projection: If C is a point, called the center of projection, then the projection of a point P different from C onto a plane that does not contain C is the intersection of the line CP with the plane. The points P such that the line CP is parallel to the plane does not have any image by the projection, but one often says that they project to a point at infinity of the plane (see Projective geometry for a formalization of this terminology). The projection of the point C itself is not defined.
  • The projection parallel to a direction D, onto a plane or parallel projection: The image of a point P is the intersection with the plane of the line parallel to D passing through P. See Affine space § Projection for an accurate definition, generalized to any dimension.[citation needed]

The concept of projection in mathematics is a very old one, and most likely has its roots in the phenomenon of the shadows cast by real-world objects on the ground. This rudimentary idea was refined and abstracted, first in a geometric context and later in other branches of mathematics. Over time different versions of the concept developed, but today, in a sufficiently abstract setting, we can unify these variations.[citation needed]

In cartography, a map projection is a map of a part of the surface of the Earth onto a plane, which, in some cases, but not always, is the restriction of a projection in the above meaning. The 3D projections are also at the basis of the theory of perspective.[citation needed]

The need for unifying the two kinds of projections and of defining the image by a central projection of any point different of the center of projection are at the origin of projective geometry. However, a projective transformation is a bijection of a projective space, a property not shared with the projections of this article.[citation needed]


The commutativity of this diagram is the universality of the projection π, for any map f and set X.
The commutativity of this diagram is the universality of the projection π, for any map f and set X.

In an abstract setting we can generally say that a projection is a mapping of a set (or of a mathematical structure) which is idempotent, which means that a projection is equal to its composition with itself. A projection may also refer to a mapping which has a right inverse. Both notions are strongly related, as follows. Let p be an idempotent mapping from a set A into itself (thus p ∘ p = p) and B = p(A) be the image of p. If we denote by π the map p viewed as a map from A onto B and by i the injection of B into A (so that p = i ∘ π), then we have π ∘ i = IdB (so that π has a right inverse). Conversely, if π has a right inverse, then π ∘ i = IdB implies that i ∘ π is idempotent.[citation needed]


The original notion of projection has been extended or generalized to various mathematical situations, frequently, but not always, related to geometry, for example:


  1. ^ "Direct product - Encyclopedia of Mathematics". Retrieved 2021-08-11.
  2. ^ Brown, Arlen; Pearcy, Carl (1994-12-16). An Introduction to Analysis. Springer Science & Business Media. ISBN 978-0-387-94369-5.
  3. ^ Alagic, Suad (2012-12-06). Relational Database Technology. Springer Science & Business Media. ISBN 978-1-4612-4922-1.
  4. ^ Date, C. J. (2006-08-28). The Relational Database Dictionary: A Comprehensive Glossary of Relational Terms and Concepts, with Illustrative Examples. "O'Reilly Media, Inc.". ISBN 978-1-4493-9115-7.
  5. ^ "Relational Algebra". Archived from the original on 30 January 2004. Retrieved 29 August 2021.
  6. ^ Sidoli, Nathan; Berggren, J. L. (2007). "The Arabic version of Ptolemy's Planisphere or Flattening the Surface of the Sphere: Text, Translation, Commentary" (PDF). Sciamvs. 8. Retrieved 11 August 2021.
  7. ^ "Stereographic projection - Encyclopedia of Mathematics". Retrieved 2021-08-11.
  8. ^ "Projection - Encyclopedia of Mathematics". Retrieved 2021-08-11.
  9. ^ Roman, Steven (2007-09-20). Advanced Linear Algebra. Springer Science & Business Media. ISBN 978-0-387-72831-5.
  10. ^ "Retraction - Encyclopedia of Mathematics". Retrieved 2021-08-11.
  11. ^ "retract". Retrieved 2021-08-11.
  12. ^ "Product of a family of objects in a category - Encyclopedia of Mathematics". Retrieved 2021-08-11.

Further reading

This page was last edited on 18 November 2021, at 18:43
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.