To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

End (topology)

From Wikipedia, the free encyclopedia

In topology, a branch of mathematics, the ends of a topological space are, roughly speaking, the connected components of the "ideal boundary" of the space. That is, each end represents a topologically distinct way to move to infinity within the space. Adding a point at each end yields a compactification of the original space, known as the end compactification.

The notion of an end of a topological space was introduced by Hans Freudenthal (1931).

YouTube Encyclopedic

  • 1/3
    Views:
    43 699
    7 581
    110 462
  • Topological Spaces Part 1
  • What is a Topological Space?
  • Topological spaces - construction and purpose - Lec 04 - Frederic Schuller

Transcription

Definition

Let be a topological space, and suppose that

is an ascending sequence of compact subsets of whose interiors cover . Then has one end for every sequence

where each is a connected component of . The number of ends does not depend on the specific sequence of compact sets; there is a natural bijection between the sets of ends associated with any two such sequences.

Using this definition, a neighborhood of an end is an open set such that for some . Such neighborhoods represent the neighborhoods of the corresponding point at infinity in the end compactification (this "compactification" is not always compact; the topological space X has to be connected and locally connected).

The definition of ends given above applies only to spaces that possess an exhaustion by compact sets (that is, must be hemicompact). However, it can be generalized as follows: let be any topological space, and consider the direct system of compact subsets of and inclusion maps. There is a corresponding inverse system , where denotes the set of connected components of a space , and each inclusion map induces a function . Then set of ends of is defined to be the inverse limit of this inverse system.

Under this definition, the set of ends is a functor from the category of topological spaces, where morphisms are only proper continuous maps, to the category of sets. Explicitly, if is a proper map and is an end of (i.e. each element in the family is a connected component of and they are compatible with maps induced by inclusions) then is the family where ranges over compact subsets of Y and is the map induced by from to . Properness of is used to ensure that each is compact in .

The original definition above represents the special case where the direct system of compact subsets has a cofinal sequence.

Examples

  • The set of ends of any compact space is the empty set.
  • The real line has two ends. For example, if we let Kn be the closed interval [−nn], then the two ends are the sequences of open sets Un = (n, ∞) and Vn = (−∞, −n). These ends are usually referred to as "infinity" and "minus infinity", respectively.
  • If n > 1, then Euclidean space has only one end. This is because has only one unbounded component for any compact set K.
  • More generally, if M is a compact manifold with boundary, then the number of ends of the interior of M is equal to the number of connected components of the boundary of M.
  • The union of n distinct rays emanating from the origin in has n ends.
  • The infinite complete binary tree has uncountably many ends, corresponding to the uncountably many different descending paths starting at the root. (This can be seen by letting Kn be the complete binary tree of depth n.) These ends can be thought of as the "leaves" of the infinite tree. In the end compactification, the set of ends has the topology of a Cantor set.

Ends of graphs and groups

In infinite graph theory, an end is defined slightly differently, as an equivalence class of semi-infinite paths in the graph, or as a haven, a function mapping finite sets of vertices to connected components of their complements. However, for locally finite graphs (graphs in which each vertex has finite degree), the ends defined in this way correspond one-for-one with the ends of topological spaces defined from the graph (Diestel & Kühn 2003).

The ends of a finitely generated group are defined to be the ends of the corresponding Cayley graph; this definition is insensitive to the choice of generating set. Every finitely-generated infinite group has either 1, 2, or infinitely many ends, and Stallings theorem about ends of groups provides a decomposition for groups with more than one end.

Ends of a CW complex

For a path connected CW-complex, the ends can be characterized as homotopy classes of proper maps , called rays in X: more precisely, if between the restriction —to the subset — of any two of these maps exists a proper homotopy we say that they are equivalent and they define an equivalence class of proper rays. This set is called an end of X.

References

  • Diestel, Reinhard; Kühn, Daniela (2003), "Graph-theoretical versus topological ends of graphs", Journal of Combinatorial Theory, Series B, 87 (1): 197–206, doi:10.1016/S0095-8956(02)00034-5, MR 1967888.
  • Freudenthal, Hans (1931), "Über die Enden topologischer Räume und Gruppen", Mathematische Zeitschrift, 33, Springer Berlin / Heidelberg: 692–713, doi:10.1007/BF01174375, ISSN 0025-5874, S2CID 120965216, Zbl 0002.05603
  • Ross Geoghegan, Topological methods in group theory, GTM-243 (2008), Springer ISBN 978-0-387-74611-1.
  • Scott, Peter; Wall, Terry; Wall, C. T. C. (1979). "Topological methods in group theory". Homological Group Theory. pp. 137–204. doi:10.1017/CBO9781107325449.007. ISBN 9781107325449.
This page was last edited on 9 June 2024, at 00:52
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.