To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

End (category theory)

From Wikipedia, the free encyclopedia

In category theory, an end of a functor is a universal dinatural transformation from an object e of X to S.[1]

More explicitly, this is a pair , where e is an object of X and is an extranatural transformation such that for every extranatural transformation there exists a unique morphism of X with for every object a of C.

By abuse of language the object e is often called the end of the functor S (forgetting ) and is written

Characterization as limit: If X is complete and C is small, the end can be described as the equalizer in the diagram

where the first morphism being equalized is induced by and the second is induced by .

YouTube Encyclopedic

  • 1/5
    4 918
    1 370 973
    2 922
    13 246 125
  • Category theory for JavaScript programmers #2: guarded functions and categories
  • Category theory for JavaScript programmers #10: coproducts
  • Three Minute Philosophy - Immanuel Kant
  • Safedrive Driving School Theory Test Workshop Preview - Book Now!
  • 10 Scary Yet Beautiful Facts About Space & Us



The definition of the coend of a functor is the dual of the definition of an end.

Thus, a coend of S consists of a pair , where d is an object of X and is an extranatural transformation, such that for every extranatural transformation there exists a unique morphism of X with for every object a of C.

The coend d of the functor S is written

Characterization as colimit: Dually, if X is cocomplete and C is small, then the coend can be described as the coequalizer in the diagram


  • Natural transformations:

    Suppose we have functors then


    In this case, the category of sets is complete, so we need only form the equalizer and in this case

    the natural transformations from to . Intuitively, a natural transformation from to is a morphism from to for every in the category with compatibility conditions. Looking at the equalizer diagram defining the end makes the equivalence clear.

  • Geometric realizations:

    Let be a simplicial set. That is, is a functor . The discrete topology gives a functor , where is the category of topological spaces. Moreover, there is a map sending the object of to the standard -simplex inside . Finally there is a functor that takes the product of two topological spaces.

    Define to be the composition of this product functor with . The coend of is the geometric realization of .



  • Mac Lane, Saunders (2013). Categories For the Working Mathematician. Springer Science & Business Media. pp. 222–226.
  • Loregian, Fosco (2015). "This is the (co)end, my only (co)friend". arXiv:1501.02503 [math.CT].

External links

This page was last edited on 4 March 2024, at 06:57
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.