To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Analytically unramified ring

From Wikipedia, the free encyclopedia

In algebra, an analytically unramified ring is a local ring whose completion is reduced (has no nonzero nilpotent).

The following rings are analytically unramified:

Chevalley (1945) showed that every local ring of an algebraic variety is analytically unramified. Schmidt (1936) gave an example of an analytically ramified reduced local ring. Krull showed that every 1-dimensional normal Noetherian local ring is analytically unramified; more precisely he showed that a 1-dimensional normal Noetherian local domain is analytically unramified if and only if its integral closure is a finite module.[citation needed] This prompted Zariski (1948) to ask whether a local Noetherian domain such that its integral closure is a finite module is always analytically unramified. However Nagata (1955) gave an example of a 2-dimensional normal analytically ramified Noetherian local ring. Nagata also showed that a slightly stronger version of Zariski's question is correct: if the normalization of every finite extension of a given Noetherian local ring R is a finite module, then R is analytically unramified.

There are two classical theorems of David Rees (1961) that characterize analytically unramified rings. The first says that a Noetherian local ring (R, m) is analytically unramified if and only if there are a m-primary ideal J and a sequence such that , where the bar means the integral closure of an ideal. The second says that a Noetherian local domain is analytically unramified if and only if, for every finitely-generated R-algebra S lying between R and the field of fractions K of R, the integral closure of S in K is a finitely generated module over S. The second follows from the first.

YouTube Encyclopedic

  • 1/3
    Views:
    919
    2 663
    307
  • Discriminant and Ramification
  • Arithmetic of Eliptic Curves - Joe Silverman
  • On the 16-rank of class groups of quadratic number fields - Djordjo Milovic

Transcription

Nagata's example

Let K0 be a perfect field of characteristic 2, such as F2. Let K be K0({un, vn : n ≥ 0}), where the un and vn are indeterminates. Let T be the subring of the formal power series ring K [[x,y]] generated by K and K2 [[x,y]] and the element Σ(unxn+ vnyn). Nagata proves that T is a normal local noetherian domain whose completion has nonzero nilpotent elements, so T is analytically ramified.

References

  • Chevalley, Claude (1945), "Intersections of algebraic and algebroid varieties", Trans. Amer. Math. Soc., 57: 1–85, doi:10.1090/s0002-9947-1945-0012458-1, JSTOR 1990167, MR 0012458
  • Huneke, Craig; Swanson, Irena (2006), Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, vol. 336, Cambridge, UK: Cambridge University Press, ISBN 978-0-521-68860-4, MR 2266432, archived from the original on 2019-11-15, retrieved 2013-07-13
  • Nagata, Masayoshi (1955), "An example of normal local ring which is analytically ramified", Nagoya Math. J., 9: 111–113, MR 0073572
  • Rees, D. (1961), "A note on analytically unramified local rings", J. London Math. Soc., 36: 24–28, MR 0126465
  • Schmidt, Friedrich Karl (1936), "Über die Erhaltung der Kettensätze der Idealtheorie bei beliebigen endlichen Körpererweiterungen", Mathematische Zeitschrift, 41 (1): 443–450, doi:10.1007/BF01180433
  • Zariski, Oscar (1948), "Analytical irreducibility of normal varieties", Ann. of Math., 2, 49: 352–361, doi:10.2307/1969284, MR 0024158
  • Zariski, Oscar; Samuel, Pierre (1975) [1960], Commutative algebra. Vol. II, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90171-8, MR 0389876
This page was last edited on 25 August 2023, at 03:46
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.