To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Group-scheme action

From Wikipedia, the free encyclopedia

In algebraic geometry, an action of a group scheme is a generalization of a group action to a group scheme. Precisely, given a group S-scheme G, a left action of G on an S-scheme X is an S-morphism

such that

  • (associativity) , where is the group law,
  • (unitality) , where is the identity section of G.

A right action of G on X is defined analogously. A scheme equipped with a left or right action of a group scheme G is called a G-scheme. An equivariant morphism between G-schemes is a morphism of schemes that intertwines the respective G-actions.

More generally, one can also consider (at least some special case of) an action of a group functor: viewing G as a functor, an action is given as a natural transformation satisfying the conditions analogous to the above.[1] Alternatively, some authors study group action in the language of a groupoid; a group-scheme action is then an example of a groupoid scheme.

Constructs

The usual constructs for a group action such as orbits generalize to a group-scheme action. Let be a given group-scheme action as above.

  • Given a T-valued point , the orbit map is given as .
  • The orbit of x is the image of the orbit map .
  • The stabilizer of x is the fiber over of the map

Problem of constructing a quotient

Unlike a set-theoretic group action, there is no straightforward way to construct a quotient for a group-scheme action. One exception is the case when the action is free, the case of a principal fiber bundle.

There are several approaches to overcome this difficulty:

Depending on applications, another approach would be to shift the focus away from a space then onto stuff on a space; e.g., topos. So the problem shifts from the classification of orbits to that of equivariant objects.

See also

References

  1. ^ In details, given a group-scheme action , for each morphism , determines a group action ; i.e., the group acts on the set of T-points . Conversely, if for each , there is a group action and if those actions are compatible; i.e., they form a natural transformation, then, by the Yoneda lemma, they determine a group-scheme action .
  • Mumford, David; Fogarty, J.; Kirwan, F. (1994). Geometric invariant theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)]. Vol. 34 (3rd ed.). Berlin, New York: Springer-Verlag. ISBN 978-3-540-56963-3. MR 1304906.


This page was last edited on 14 February 2020, at 15:58
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.