Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Признак Дирихле — теорема, указывающая достаточные условия сходимости несобственных интегралов и суммируемости бесконечных рядов. Названа в честь немецкого математика Лежёна Дирихле.

Признак Дирихле сходимости несобственных интегралов

Рассмотрим функции и , определённые на промежутке , , и имеющую в точке особенность (первого или второго рода). Пусть выполнены условия:

  • интеграл с верхним переменным пределом определён для всех и ограничен на ;
  • функция монотонна на и .

Тогда сходится.

Признак можно сформулировать и для случая, если особенность в точке . Пусть , и определена на . В таком случае условия видоизменяются следующим образом:

  • интеграл с нижним переменным пределом определён для всех и ограничен на ;
  • монотонна на и .

Тогда сходится.

Необязательно также, что . Если , то и сходимость равносильна сходимости .

Если интеграл удовлетворяет условиям признака Дирихле, то для его остатка верна следующая оценка:

Здесь – произвольное число из промежутка, а — число, которым ограничен интеграл с верхним переменным пределом. При помощи этой оценки можно приближать значение несобственного интеграла собственным с любой наперёд заданной точностью.

Однако условие монотонности не является необходимым.

— сходится.
  • Условие ограниченности первообразной в признаке Дирихле также является существенным, но не является необходимым.

Признак Дирихле сходимости рядов Абелева типа

Определение (ряд Абелева типа)

Ряд , где и последовательность  — положительна и монотонна (начиная с некоторого места, хотя бы в широком смысле слова), называется рядом Абелева типа.

Теорема (признак Дирихле сходимости рядов Абелева типа)

Пусть выполнены условия:

  • Последовательность частичных сумм ограничена, то есть .
  • .
  • .

Тогда ряд сходится.

  • Признак Дирихле сходимости рядов Абелева типа является аналогом признака Дирихле о сходимости несобственного интеграла первого рода.
  • Легко убедиться, что признак Лейбница сходимости знакочередующихся рядов является частным случаем этой теоремы, а именно:
сходимость ряда Лейбница на основании признака Дирихле.
  • Оценка остатка ряда Абелева типа
    Рассмотрим ряд и пусть выполнены условия признака Дирихле. Тогда имеет место оценка: .
  • Доказательство признака Дирихле вытекает из преобразования Абеля.

Признак Дирихле равномерной сходимости несобственного интеграла с параметром

Пусть функция и определёны на множестве , , и допускается, что интеграл для каких-то точек имеет особенность в точке . Пусть выполнены условия:

  • интеграл с верхним переменным пределом определён для всех , и равномерно ограничен на ;
  • функция монотонна по на для каждого конкрентого и при .

Тогда сходится равномерно.

См. также

Литература

А. К. Боярчук «Функции комплексного переменного: теория и практика» Справочное пособие по высшей математике. Т.4 М.: Едиториал УРСС, 2001. — 352с.

Эта страница в последний раз была отредактирована 20 июля 2023 в 12:33.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).