To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Disulfur dinitride

From Wikipedia, the free encyclopedia

Disulfur dinitride
Space-filling model of disulfur dinitride
Names
Preferred IUPAC name
Disulfur dinitride
Systematic IUPAC name
4,3,2,4-Dithiadiazete
Other names
Cyclic sulfur(II,IV) nitride
1,3-dithia-2,4-diazacyclobutan-2,4-diyl
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
  • InChI=1S/N2S2/c1-3-2-4-1
    Key: HGFWWXXKPBDJAH-UHFFFAOYSA-N
  • S1N=S=N1
Properties
S2N2
Molar mass 92.1444 g/mol
Appearance colourless crystals
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Disulfur dinitride is the chemical compound with the formula S2N2.

YouTube Encyclopedic

  • 1/5
    Views:
    1 053
    23 206
    60 243
    128 003
    253 938
  • How to Write the Formula for Disulfur difluoride
  • N2O liquid: Nitrous oxide (Dinitrogen monoxide) chemical reactions.
  • CS2: Carbon disulfide. Chemical reactions
  • Barking Dog Chemical Experiment - Cool chemical reaction!
  • Lewis Structure of N2 (Nitrogen Gas)

Transcription

Preparation and reactions

Passing gaseous S4N4 over silver metal wool at 250–300 °C at low pressure (1 mmHg) yields cyclic S2N2. The silver reacts with the sulfur produced by the thermal decomposition of the S4N4 to form Ag2S, and the resulting Ag2S catalyzes the conversion of the remaining S4N4 into the four-membered ring S2N2,[1]

S4N4 + 8 Ag → 4 Ag2S + 2 N2
S4N4 → 2 S2N2

An alternative uses the less explosive S4N3Cl.[2][clarification needed]

S2N2 decomposes explosively above 30°C, and is shock sensitive.[1] It readily sublimes, and is soluble in diethyl ether. Traces of water cause it to polymerize into S4N4.[2] In the solid state it spontaneously polymerizes forming (SN)n.[1] It forms adducts with Lewis acids via a nitrogen atom, e.g. S2N2·BCl3, S2N2·2AlCl3, S2N2·SbCl5, S2N2·2SbCl5.[2][3]

Structure and bonding

The S2N2 molecule is a four-membered ring, with alternating S and N atoms. The S2N2 molecule is a resonance hybrid of many contributing structures. In one of those structures, one S atom has valence 4 and the other S atom has valence 2, and both N atoms has valence 3. In the other structure both S atoms have valence 2 and both N atoms has valence 3, and one of the S atoms has a charge of +1, and one of the N atoms has a charge of −1. The molecule is almost square and planar. The S–N bond lengths are 165.1 pm and 165.7 pm and the bond angles are very close to 90°.[1] The S2N2 molecule is isoelectronic with the cyclic S2+4 dication and has 6π electrons.[2] The bonding has been investigated using a spin-coupled valence bond method [4] and is described as having four framework sigma bonds, with the N atoms bearing a high negative charge and the S atoms a corresponding positive charge. Two π electrons from the sulfur atoms are coupled across the ring making the molecule overall a singlet diradical.

See also

References

  1. ^ a b c d Greenwood, Norman  N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  2. ^ a b c d Wiberg, E.; Holleman, A. F. (2001). Inorganic Chemistry. Elsevier. ISBN 0-12-352651-5.
  3. ^ Patton R. L.; Raymond, K. N. (1969). "The Crystal and Molecular Structure of S2N2(SbCl5)2". Inorganic Chemistry. 8 (11): 2426–2431. doi:10.1021/ic50081a035.
  4. ^ Gerratt, J.; McNicholas, S. J.; Karadakov, P. B.; Sironi, M.; Raimondi, M.; Cooper, D. L. (1996). "The Extraordinary Electronic Structure of N2S2". Journal of the American Chemical Society. 118 (27): 6472–6476. doi:10.1021/ja953994f.
This page was last edited on 18 May 2024, at 19:26
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.