To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Silver nitride

From Wikipedia, the free encyclopedia

Silver nitride
Names
IUPAC name
Silver(I) nitride
Other names
Fulminating silver
Argentous nitride
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/3Ag.N/q3*+1;-3 checkY
    Key: XSNQEMWVLMRPFR-UHFFFAOYSA-N checkY
  • InChI=1/3Ag.N/q3*+1;-3
    Key: XSNQEMWVLMRPFR-UHFFFAOYAP
  • [Ag+].[Ag+].[Ag+].[N-3]
Properties
Ag3N
Molar mass 337.62
Appearance Black solid
Density 9 g/cm3
Boiling point Explodes at 165 °C
Slightly
Solubility Decomposes in acids
Structure
face centered cubic
Thermochemistry
199.1 kJ/mol[1][verification needed]
314.4 kJ/mol[2]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Explosive
Flash point Flammable
Safety data sheet (SDS) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Silver nitride is an explosive chemical compound with symbol Ag3N. It is a black, metallic-looking[3] solid which is formed when silver oxide or silver nitrate[4] is dissolved in concentrated solutions of ammonia, causing formation of the diammine silver complex which subsequently breaks down to Ag3N. The standard free energy of the compound is about +315 kJ/mol, making it an endothermic compound which decomposes explosively to metallic silver and nitrogen gas.

YouTube Encyclopedic

  • 1/5
    Views:
    71 736
    679 060
    1 213 000
    758 134
    1 059 505
  • FULMINATING SILVER EXPLOSIVE (synthesis)
  • Sulfur Nitride, My Arch Nemesis - Ex&F
  • Make Glass Mirrors with Silver Nitrate
  • Making a silver mirror
  • Slow Motion Contact Explosive - Nitrogen Triiodide

Transcription

History

Silver nitride was formerly referred to as fulminating silver, but this can cause confusion with silver fulminate or silver azide, other compounds which have also been referred to by this name. The fulminate and azide compounds do not form from ammoniacal solutions of Ag2O.[2] Fulminating silver was first prepared in 1788 by the French chemist Claude Louis Berthollet.[5]

Properties

Silver nitride is poorly soluble in water, but decomposes in mineral acids; decomposition is explosive in concentrated acids. It also slowly decomposes in air at room temperature and explodes upon heating to 165 °C.[6]

Hazards

Silver nitride is often produced inadvertently during experiments involving silver compounds and ammonia, leading to surprise detonations. Whether silver nitride is formed depends on the concentration of ammonia in the solution. Silver oxide in 1.52 M ammonia solution readily converts to the nitride, while silver oxide in 0.76 M solution does not form nitride.[2] Silver oxide can also react with dry ammonia to form Ag3N. Silver nitride is more dangerous when dry; dry silver nitride is a contact explosive which may detonate from the slightest touch, even a falling water droplet.[2] It is also explosive when wet, although less so, and explosions do not propagate well in wet deposits of the compound. Because of its long-term instability, undetonated deposits of Ag3N will lose their sensitivity over time.

Silver nitride may appear as black crystals, grains, crusts, or mirrorlike deposits on container walls. Suspected deposits may be dissolved by adding dilute ammonia or concentrated ammonium carbonate solution, removing the explosion hazard.[3][7]

Other uses of the term

The name "silver nitride" is sometimes also used to describe a reflective coating consisting of alternating thin layers of silver metal and silicon nitride. This material is not explosive, and is not a true silver nitride. It is used to coat mirrors and shotguns.[8][9]

See also

References

  1. ^ "silver nitride". Chemister.
  2. ^ a b c d Edward S. Shanley, John L. Ennis (1991). "The Chemistry and Free Energy Formation of Silver Nitride". Ind. Eng. Chem. Res. 30 (11): 2503. doi:10.1021/ie00059a023.
  3. ^ a b John L. Ennis and Edward S. Shanley (1991). "On Hazardous Silver Compounds". J. Chem. Educ. 68 (1): A6. Bibcode:1991JChEd..68....6E. doi:10.1021/ed068pA6.
  4. ^ "Silver Nitrate" (PDF). Archived from the original (PDF) on March 3, 2016. Retrieved February 11, 2010.
  5. ^ See:
    • Berthollet (1788) "Procéde pour rendre la chaux d'argent fulminante" (Procedure for making fulminating silver chalk), Observations sur la physique … , 32 : 474–475.
    • Davis, Tenney L., The Chemistry of Powder And Explosives (Las Vegas, Nevada: Angriff Press, 1998), p. 401. (Originally published in 1941 and 1943 by Wiley of New York, New York.)
  6. ^ Wolfgang A. Herrmann, Georg Brauer, ed. (2014-05-14). Synthetic methods of organometallic and inorganic chemistry: Volume 5, 1999: Volume 5: Copper, Silver, Gold, Zinc, Cadmium and Mercury. Georg Thieme Verlag. p. 38. ISBN 978-3-13-179211-2.
  7. ^ "Silver oxide". Retrieved February 11, 2010.
  8. ^ "Silicon nitride protective coatings for silvered glass mirrors". Retrieved February 11, 2010.
  9. ^ "Browning Shotguns". Retrieved February 11, 2010.
This page was last edited on 17 March 2023, at 14:24
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.