To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Aurone
Aurone Z configuration
Names
Preferred IUPAC name
2-Benzylidene-1-benzofuran-3(2H)-one
Other names
2-Benzylidenebenzofuran-3(2H)-one
2-Benzylidene-1-benzofuran-3-one
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/C15H10O2/c16-15-12-8-4-5-9-13(12)17-14(15)10-11-6-2-1-3-7-11/h1-10H checkY
    Key: OMUOMODZGKSORV-UHFFFAOYSA-N checkY
  • InChI=1/C15H10O2/c16-15-12-8-4-5-9-13(12)17-14(15)10-11-6-2-1-3-7-11/h1-10H
    Key: OMUOMODZGKSORV-UHFFFAOYAF
  • C1=CC=C(C=C1)C=C2C(=O)C3=CC=CC=C3O2
Properties
C15H10O2
Molar mass 222.243 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

An aurone is a heterocyclic chemical compound, which is a type of flavonoid.[1] There are two isomers of the molecule, with (E)- and (Z)-configurations. The molecule contains a benzofuran element associated with a benzylidene linked in position 2. In aurone, a chalcone-like group is closed into a 5-membered ring instead of the 6-membered ring more typical of flavonoids.

YouTube Encyclopedic

  • 1/5
    Views:
    301
    1 742 231
    27 389
    295 416
    329 154
  • Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights
  • How HYDROGEN PEROXIDE Ear Drops Work (Ear Wax Removal)
  • Biosynthesis of polyketide natural products
  • Housekeeping Cleaning Agents - Taski R-Series Chemicals (R1 to R9) usage
  • How To Install W/c In The Toilet|Somany One Piece Commode Installation|Bathroom Fitting|Plumber

Transcription

Aurone derivatives

Skeletal structure of an (Z)-aurone with numbering scheme used for nomenclature of derivatives

Aurone forms the core for a family of derivatives which are known collectively as aurones. Aurones are plant flavonoids that provide yellow color to the flowers of some popular ornamental plants, such as snapdragon and cosmos.[2] Aurones including 4'-chloro-2-hydroxyaurone (C15H11O3Cl) and 4'-chloroaurone (C15H9O2Cl) can also be found in the brown alga Spatoglossum variabile.[3]

Most aurones are in a (Z)-configuration, which is the more stable configuration according to Austin Model 1 computation.[3] But there are also some in the (E)-configurations such as (E)-3'-O-β-d-glucopyranosyl-4,5,6,4'-tetrahydroxy-7,2'-dimethoxyaurone, found in Gomphrena agrestis.[4]

Biosynthesis

Aurones are biosynthesized starting from coumaryl-CoA.[5] Aureusidin synthase catalyzes the creation of aurones from chalcones through hydroxylation and oxidative cyclization.[2]

Applications

Some aurone derivatives possess antifungal properties[6] and analogy with flavonoids suggests that aurones could have other biological properties.[7]

Related compound examples

  • Aureusidin
  • Hispidol (6,4'-dihydroxyaurone)[8]
  • Leptosidin
  • Sulfuretin (6,3',4'-trihydroxyaurone)
  • 4,5,6-Trihydroxyaurone

References

  1. ^ Nakayama, T (2002). "Enzymology of aurone biosynthesis". Journal of Bioscience and Bioengineering. 94 (6): 487–91. doi:10.1016/S1389-1723(02)80184-0. PMID 16233339.
  2. ^ a b Nakayama, T; Sato, T; Fukui, Y; Yonekura-Sakakibara, K; Hayashi, H; Tanaka, Y; Kusumi, T; Nishino, T (2001). "Specificity analysis and mechanism of aurone synthesis catalyzed by aureusidin synthase, a polyphenol oxidase homolog responsible for flower coloration". FEBS Letters. 499 (1–2): 107–11. doi:10.1016/S0014-5793(01)02529-7. PMID 11418122.
  3. ^ a b Atta-Ur-Rahman; Choudhary, MI; Hayat, S; Khan, AM; Ahmed, A (2001). "Two new aurones from marine brown alga Spatoglossum variabile". Chemical & Pharmaceutical Bulletin. 49 (1): 105–7. doi:10.1248/cpb.49.105. PMID 11201212.
  4. ^ Ferreira, EO; Salvador, MJ; Pral, EM; Alfieri, SC; Ito, IY; Dias, DA (2004). "A new heptasubstituted (E)-aurone glucoside and other aromatic compounds of Gomphrena agrestis with biological activity" (PDF). Zeitschrift für Naturforschung C. 59 (7–8): 499–505. doi:10.1515/znc-2004-7-808. PMID 15813368. S2CID 15589214.
  5. ^ Vogt, T. (2010). "Phenylpropanoid Biosynthesis". Molecular Plant. 3: 2–20. doi:10.1093/mp/ssp106. PMID 20035037.
  6. ^ Sutton, Caleb L.; Taylor, Zachary E.; Farone, Mary B.; Handy, Scott T. (2017-02-15). "Antifungal activity of substituted aurones". Bioorganic & Medicinal Chemistry Letters. 27 (4): 901–903. doi:10.1016/j.bmcl.2017.01.012. PMID 28094180.
  7. ^ Villemin, Didier; Martin, Benoit; Bar, Nathalie (1998). "Application of Microwave in Organic Synthesis. Dry Synthesis of 2-Arylmethylene-3(2)-naphthofuranones". Molecules. 3 (8): 88. doi:10.3390/30300088.
  8. ^ Hispidol on metabolomics.jp
This page was last edited on 18 August 2023, at 23:08
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.