To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Pesampator
Clinical data
Other namesBIIB-104; PF-04958242
Identifiers
  • N-[(3S,4S)-4-[4-(5-cyanothiophen-2-yl)phenoxy]oxolan-3-yl]propane-2-sulfonamide
CAS Number
PubChem CID
ChemSpider
UNII
Chemical and physical data
FormulaC18H20N2O4S2
Molar mass392.49 g·mol−1
3D model (JSmol)
  • CC(C)S(=O)(=O)N[C@H]1COC[C@H]1OC2=CC=C(C=C2)C3=CC=C(S3)C#N
  • InChI=1S/C18H20N2O4S2/c1-12(2)26(21,22)20-16-10-23-11-17(16)24-14-5-3-13(4-6-14)18-8-7-15(9-19)25-18/h3-8,12,16-17,20H,10-11H2,1-2H3/t16-,17+/m0/s1
  • Key:TTYKUKSFWHEBLI-DLBZAZTESA-N

Pesampator (INN; developmental code names BIIB-104 and PF-04958242) is a positive allosteric modulator (PAM) of the AMPA receptor (AMPAR), an ionotropic glutamate receptor, which is under development by Pfizer for the treatment of cognitive symptoms in schizophrenia.[1][2][3] It was also under development for the treatment of age-related sensorineural hearing loss, but development for this indication was terminated due to insufficient effectiveness.[3][4] As of July 2018, pesampator is in phase II clinical trials for cognitive symptoms in schizophrenia.[3]

Pesampator belongs to the biarylpropylsulfonamide group of AMPAR PAMs, which also includes LY-404187, LY-503430, and mibampator (LY-451395) among others.[5] It is described as a "high-impact" AMPAR PAM, unlike so-called "low-impact" AMPAR PAMs like CX-516 and its congener farampator (CX-691, ORG-24448).[2] In animals, low doses of pesampator have been found to enhance cognition and memory, whereas higher doses produce motor coordination disruptions and convulsions.[2] The same effects, as well as neurotoxicity at higher doses, have been observed with orthosteric and other high-impact allosteric AMPAR activators.[2]

In healthy volunteers, pesampator has been found to significantly reduce ketamine-induced deficits in verbal learning and working memory without attenuating ketamine-induced psychotomimetic effects.[2] It was able to complete reverse ketamine-induced impairments in spatial working memory in the participants.[2]

In addition to its actions on the AMPAR, pesampator has been reported to act as a GlyT1 glycine transporter blocker.[6][7] As such, it is also a glycine reuptake inhibitor, and may act indirectly to activate the glycine receptor and the glycine co-agonist site of the NMDA receptor by increasing extracellular levels of glycine.[6][7]

See also

References

  1. ^ Shaffer CL, Patel NC, Schwarz J, Scialis RJ, Wei Y, Hou XJ, Xie L, Karki K, Bryce DK, Osgood SM, Hoffmann WE, Lazzaro JT, Chang C, McGinnis DF, Lotarski SM, Liu J, Obach RS, Weber ML, Chen L, Zasadny KR, Seymour PA, Schmidt CJ, Hajós M, Hurst RS, Pandit J, O'Donnell CJ (2015). "The discovery and characterization of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor potentiator N-{(3S,4S)-4-[4-(5-cyano-2-thienyl)phenoxy]tetrahydrofuran-3-yl}propane-2-sulfonamide (PF-04958242)". J. Med. Chem. 58 (10): 4291–308. doi:10.1021/acs.jmedchem.5b00300. PMID 25905800.
  2. ^ a b c d e f Ranganathan M, DeMartinis N, Huguenel B, Gaudreault F, Bednar MM, Shaffer CL, Gupta S, Cahill J, Sherif MA, Mancuso J, Zumpano L, D'Souza DC (2017). "Attenuation of ketamine-induced impairment in verbal learning and memory in healthy volunteers by the AMPA receptor potentiator PF-04958242". Mol. Psychiatry. 22 (11): 1633–1640. doi:10.1038/mp.2017.6. PMID 28242871. S2CID 3691566.
  3. ^ a b c "PF 4958242". AdisInsight. Retrieved 2017-08-30.
  4. ^ Bednar MM, DeMartinis N, Banerjee A, Bowditch S, Gaudreault F, Zumpano L, Lin FR (2015). "The Safety and Efficacy of PF-04958242 in Age-Related Sensorineural Hearing Loss: A Randomized Clinical Trial". JAMA Otolaryngol Head Neck Surg. 141 (7): 607–13. doi:10.1001/jamaoto.2015.0791. PMID 25997115.
  5. ^ Froestl W, Muhs A, Pfeifer A (2012). "Cognitive enhancers (nootropics). Part 1: drugs interacting with receptors". J. Alzheimers Dis. 32 (4): 793–887. doi:10.3233/JAD-2012-121186. PMID 22886028.
  6. ^ a b Singer P, Dubroqua S, Yee BK (2015). "Inhibition of glycine transporter 1: The yellow brick road to new schizophrenia therapy?". Curr. Pharm. Des. 21 (26): 3771–87. doi:10.2174/1381612821666150724100952. PMID 26205290.
  7. ^ a b Mukherjea D, Ghosh S, Bhatta P, Sheth S, Tupal S, Borse V, Brozoski T, Sheehan KE, Rybak LP, Ramkumar V (2015). "Early investigational drugs for hearing loss". Expert Opin Investig Drugs. 24 (2): 201–17. doi:10.1517/13543784.2015.960076. PMC 5488860. PMID 25243609.
This page was last edited on 18 December 2023, at 15:56
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.