To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

AP5
Names
Preferred IUPAC name
(2R)-2-Amino-5-phosphonopentanoic acid
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.150.904 Edit this at Wikidata
UNII
  • InChI=1S/C5H12NO5P/c6-4(5(7)8)2-1-3-12(9,10)11/h4H,1-3,6H2,(H,7,8)(H2,9,10,11)/t4-/m1/s1 checkY
    Key: VOROEQBFPPIACJ-SCSAIBSYSA-N checkY
  • InChI=1/C5H12NO5P/c6-4(5(7)8)2-1-3-12(9,10)11/h4H,1-3,6H2,(H,7,8)(H2,9,10,11)/t4-/m1/s1
    Key: VOROEQBFPPIACJ-SCSAIBSYBE
  • O=P(O)(O)CCC[C@@H](N)C(=O)O
Properties
C5H12NO5P
Molar mass 197.13 g/mol
Appearance white solid
Density 1.529 g/mL
Boiling point 482.1 °C (899.8 °F; 755.2 K)
Ammonium hydroxide, 50 mg/mL
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

AP5 (also known as APV, (2R)-amino-5-phosphonovaleric acid, or (2R)-amino-5-phosphonopentanoate) is a chemical compound used as a biochemical tool to study various cellular processes. It is a selective NMDA receptor antagonist that competitively inhibits the ligand (glutamate) binding site of NMDA receptors.[1] AP5 blocks NMDA receptors in micromolar concentrations (~50 μM).

AP5 blocks the cellular analog of classical conditioning in the sea slug Aplysia californica, and has similar effects on Aplysia long-term potentiation (LTP), since NMDA receptors are required for both.[2] It is sometimes used in conjunction with the calcium chelator BAPTA to determine whether NMDARs are required for a particular cellular process. AP5/APV has also been used to study NMDAR-dependent LTP in the mammalian hippocampus.[3]

In general, AP5 is very fast-acting within in vitro preparations, and can block NMDA receptor action at a reasonably small concentration. The active isomer of AP5 is considered to be the D configuration, although many preparations are available as a racemic mixture of D- and L-isomers. It is useful to isolate the action of other glutamate receptors in the brain, i.e., AMPA and kainate receptors.

AP5 can block the conversion of a silent synapse to an active one, since this conversion is NMDA receptor-dependent.

See also

References

  1. ^ Morris RG. Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. Journal of Neuroscience. 1989 Sep;9(9):3040-57. PMID 2552039
  2. ^ Cellular Analog of Differential Classical Conditioning in Aplysia: Disruption by the NMDA Receptor Antagonist DL-2-Amino-5-Phosphonovalerate
  3. ^ Gustafsson B., Wigström H., Abraham W.C., and Huang Y.Y. Long-Term Potentiation in the Hippocampus Using Depolarizing Current Pulses as the Conditioning Stimulus to Single Volley Synaptic Potentials. Journal of Neuroscience. 1987 March;7(3):774-780

External links

  • Laube, B; Hirai H, Sturgess M, Betz H, and Kuhse J (1997). "Molecular determinants of antagonists discrimination by NMDA receptor subunits: Analysis of the glutamate binding site on the NR2B subunit". Neuron 18 (3): 493–503. doi:10.1016/S0896-6273(00)81249-0. PMID 9115742.
This page was last edited on 5 April 2024, at 22:00
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.