Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

XTR (сокращение от ECSTR — «Efficient and Compact Subgroup Trace Representation») — алгоритм шифрования с открытым ключом, основывающийся на вычислительной сложности задачи дискретного логарифмирования. Преимущества этого алгоритма перед другими, использующими эту идею, в более высокой скорости и меньшем размере ключа.

Данный алгоритм использует генератор относительно малой подгруппы порядка ( — простое) подгруппы . При правильном выборе , дискретное логарифмирование в группе, порожденной , имеет ту же вычислительную сложность, что и в . XTR использует арифметику вместо , обеспечивая ту же защищенность, но с меньшими затратами на вычисления и передачу данных.

Теоретическая основа XTR

Алгоритм работает в конечном поле . Рассмотрим группу порядка , и её подгруппу порядка q, где p — простое число, такое, что другое достаточно большое простое число q является делителем . Группа порядка q называется XTR-подгруппой. Эта циклическая группа является подгруппой и имеет генератор g.

Арифметические операции в

Пусть p — простое число, такое, что p2 mod 3, а p2 — p + 1 делится на достаточно большое простое q. Так как p21 mod 3, p порождает . Таким образом, круговой многочлен является неприводимым в . Следовательно, корни и образуют оптимальный нормальный базис над и

С учетом p2 mod 3:

Таким образом, стоимость арифметических операций следующая:

  • Вычисление xp не требует умножения
  • Вычисление x2 требует двух операций умножения в
  • Вычисление xy требует трех операций умножения в
  • Вычисление xz-yzp требует четырёх операций умножения в .:[1]

Использование следов в

Элементами, сопряженными с в являются: сам и , а их сумма — след .

Кроме того:

Рассмотрим генератор XTR-группы порядка , где  — простое число. Так как  — подгруппа группы порядка , то . Кроме того,

и

.

Таким образом,

Отметим также, что сопряженным к элементу является , то есть, имеет норму равную 1. Ключевой особенностью XTR является то, что минимальный многочлен в

упрощается до

Иными словами, сопряженные с элементы, как корни минимального многочлена в , полностью определяются следом . Аналогичные рассуждения верны для любой степени :

— этот многочлен определяется следом .

Идея алгоритма в том, чтобы заменить на , то есть вычислять по вместо по Однако для того, чтобы метод был эффективен, необходим способ быстро получать по имеющемуся .

Алгоритм быстрого вычисления по [2]

Определение: Для каждого определим:

Определение: Пусть  — корни в , а . Обозначим:

Свойства и :

  1. для
  2. для
  3. Либо все имеют порядок, являющийся делителем и , либо все  — в поле . В частности,  — неприводим тогда и только тогда, когда его корни имеют порядок, являющийся делителем и .
  4. приводим в поле тогда и только тогда, когда

Утверждение: Пусть даны .

  1. Вычисление требует двух операций произведения в поле .
  2. Вычисление требует четырёх операций произведения в поле .
  3. Вычисление требует четырёх операций произведения в поле .
  4. Вычисление требует четырёх операций произведения в поле .

Определение: Пусть .

Алгоритм для вычисления при заданных и

  • При алгоритм применяется для и , затем используется свойство 2 для получения конечного результатаю
  • При , .
  • При , .
  • При , воспользуемся выражениями для и , чтобы найти и, соответственно, .
  • При , чтобы вычислить , введем
и если не нечетно и если четно. Положим и найдем , используя Утверждение, и . Пусть, в дальнейшем,
где и . Для последовательно выполним следующее:
  • При , воспользуемся чтобы найти .
  • При , воспользуемся чтобы найти .
  • Заменим на .

По завершении итераций, , а . Если n — четно, воспользуемся чтобы найти .

Выбор параметров

Выбор поля и размера подгруппы

Чтобы воспользоваться преимуществами представления элементов групп в виде их следов и обеспечить достаточную защищенность данных, необходимо найти простые и , где  — характеристика поля , причем , а  — размер подгруппы и делитель . Обозначим как и размеры и в битах. Чтобы достичь уровня безопасности, который обеспечивает, к примеру, RSA с длиной ключа в 1024 бита, требуется выбрать таким, что , то есть а может быть около 160. Первый алгоритм, который позволяет вычислить такие простые и  — Алгоритм А.

Алгоритм А

  1. Найдём такое, что число  — простое число длиной в бит.
  2. Найдем такое, что число  — простое длиной бит, а также .
Корректность Алгоритма А:
Необходимо проверить лишь то, что , так как все оставшиеся свойства очевидно выполнены из-за специфики выбора и .
Нетрудно заметить, что , значит .

Алгоритм А очень быстрый, однако может быть небезопасен, так как уязвим против атаки с использованием решета числового поля.

От этого недостатка избавлен более медленный Алгоритм Б.

Алгоритм Б

  1. Выберем простое число длиной в бит, такое, что .
  2. Найдем корни и .
  3. Найдем такое, что , - простое -битовое число и при этом для
Корректность Алгоритма Б:
Как только мы выбираем , автоматически выполняется условие (Так как и ). Из этого утверждения и квадратичного закона взаимности следует, что корни и существуют.
Чтобы проверить, что снова рассмотрим для и заметим, что .Значит и -корни и, следовательно, .

Выбор подгруппы

В предыдущем разделе мы нашли размеры и конечного поля и мультипликативной подгруппы в . Теперь следует найти подгруппу в для некоторых таких, что . Однако, необязательно искать явный элемент , достаточно найти элемент такой, что для элемента порядка . Но при данном , генератор XTR-группы может быть найден путём нахождения корня . Чтобы найти это , рассмотрим свойство 5 . Найдя такое следует проверить, действительно ли оно порядка , однако сначала нужно выбрать c\in GF(p²), такое, что F(c,\ X) — неприводимо. Простейший подход в том, чтобы выбирать случайным образом.

Утверждение: Для случайно выбранного вероятность, что  — неприводимо, больше 1/3.

Базовый алгоритм для поиска :

  1. Выберем случайное .
  2. Если  — приводим, вернемся на первый шаг.
  3. Воспользуемся алгоритмом для поиска . Найдем .
  4. Если имеет порядок не равный , вернемся на первый шаг.
  5. Пусть .

Данный алгоритм вычисляет элемент поля эквивалентный для некоторых порядка .[1]

Примеры

Протокол Диффи-Хеллмана

Предположим, у Алисы и Боба есть открытый XTR-ключ и они хотят сгенерировать общий закрытый ключ .

  1. Алиса выбирает случайное число такое, что , вычисляет и посылает Бобу.
  2. Боб получает от Алисы, выбирает случайное такое, что , вычисляет и посылает Алисе.
  3. Алиса получает от Боба, вычисляет и получает  — закрытый ключ .
  4. Точно так же, Боб вычисляет и получает  — закрытый ключ .

Схема Эль-Гамаля

Предположим, у Алисы есть часть публичного ключа XTR: . Алиса выбирает секретное целое число и вычисляет и публикует . Получив публичный ключ Алисы , Боб может зашифровать сообщение , предназначенное Алисе, используя следующий алгоритм:

  1. Боб выбирает случайное такое, что и вычисляет .
  2. Затем Боб вычисляет.
  3. Боб определяет симметричный ключ основанный на .
  4. Боб шифрует сообщение ключом , получая зашифрованное сообщение .
  5. Пару Боб посылает Алисе.

Получив пару , Алиса расшифровывает её следующим образом:

  1. Алиса вычисляет .
  2. Алиса определяет симметричный ключ основанный на .
  3. Зная, что алгоритм шифрования сообщения — симметричный, Алиса ключом расшифровывает , получая исходное сообщение .

Таким образом, сообщение передано.

Примечания

  1. 1 2 Lenstra, Arjen K.; Verheul, Eric R. An overview of the XTR public key system (неопр.). Архивировано 15 апреля 2006 года.
  2. Lenstra, Arjen K.; Verheul, Eric R. The XTR public key system (неопр.).
Эта страница в последний раз была отредактирована 25 июля 2022 в 18:57.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).