Для установки нажмите кнопочку Установить расширение. И это всё.
Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.
Как перевоплотить Википедию
Хотите, чтобы Википедия всегда выглядела так профессионально и современно? Мы создали расширение для браузера. Оно совершенствует любую страницу энциклопедии, которую вы посетите, с помощью магических технологий WIKI 2.
Попробуйте — вы его можете удалить в любой момент.
Установить за 5 сек.
Да-да, но позже
4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день и почти забыл как выглядит оригинальная Википедия.
У этого термина существуют и другие значения, см. След.
След (англ.Trace) — отображение элементов конечного расширения поля в исходное поле K, определяемое следующим образом:
Пусть E — конечное расширениеKстепени, — элемент поля E. Поскольку E является векторным пространством над полем K, этот элемент определяет линейное преобразование. Этому преобразованию в некотором базисе можно сопоставить матрицу. След этой матрицы называется следом элемента α. Так как в другом базисе данному отображению будет соответствовать подобная матрица с тем же следом, след не зависит от выбора базиса, то есть каждому элементу расширения однозначно сопоставляется его след. Он обозначается или, если понятно, о каком расширении идёт речь, просто .
Энциклопедичный YouTube
1/3
Просмотров:
6 816
267 096
385 937
Шахматист, НЕ ВЫПЕНДРИВАЙСЯ!
Егор Яковлев - как формировалось мировоззрение Адольфа Гитлера
Музей мата / Голунов vs Навальный: кто победит? / Плавучая тюрьма в центре Нью-Йорка
Пусть σ1,σ2…σm — все автоморфизмы E, оставляющие неподвижными элементы K. Если E сепарабельно, то m равно степени [E:К]=n. Тогда для следа существует следующее выражение:
Если E несепарабельно то m≠n, но n кратно m, причём частное является некоторой степенью характеристикиp: n=pim.
Тогда
Пример
Пусть K — поле действительных чисел, а E — поле комплексных чисел. Тогда след числа равен . След комплексного числа можно вычислить по формуле , и это хорошо согласуется с тем, что комплексное сопряжение — единственный автоморфизм поля комплексных чисел.