Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Типы корпусов микросхем

Из Википедии — свободной энциклопедии

Советская микросхема К1ЖГ453. Разработка 1970 года, производство 1977 года

Корпус интегральной микросхемы (ИМС) — герметичная несущая система и часть конструкции, предназначенная для защиты кристалла интегральной схемы от внешних воздействий и для электрического соединения с внешними цепями посредством выводов. Для упрощения технологии автоматизированной сборки (монтажа) РЭА, включающей в себя ИМС, типоразмеры корпусов ИМС стандартизованы.

В советских (российских) корпусах ИМС расстояние между выводами (шаг) измеряется в миллиметрах; для корпусов типа 1 и 22,5 мм, для корпуса типа 3 под углом 30 или 45° и для типа 41,25 мм.

Зарубежные производители ИМС измеряют шаг в долях дюйма, милах (1/1000 дюйма) или используют величину 1/10 или 1/20 дюйма, что в переводе в метрическую систему соответствует 2,54 и 1,27 мм.

В современных импортных корпусах ИМС, предназначенных для поверхностного монтажа, применяют и метрические размеры: 0,8 мм; 0,65 мм и другие.

Выводы корпусов ИМС могут быть круглыми, диаметром 0,3—0,5 мм или прямоугольными, в пределах описанной окружности 0,4—0,6 мм.

ИМС выпускаются в двух конструктивных вариантах — корпусном и бескорпусном.

При монтаже ИМС на поверхность печатной платы необходимо принять меры по недопущению деформации корпуса. С одной стороны, должна обеспечиваться механическая прочность монтажа, гарантирующая устойчивость к механическим нагрузкам, с другой — определённая «гибкость» крепления, чтобы возможная в процессе нормальной эксплуатации деформация печатной платы не превысила допустимые пределы механической нагрузки на корпус ИМС, влекущей за собой различные негативные последствия: от растрескивания корпуса ИМС с последующей потерей герметичности до отрыва подложки от корпуса.

Кроме того, схема размещения корпусов ИМС на печатной плате, зависящая от конструкции платы и компоновки на ней элементов, должна обеспечить:

  • эффективный отвод тепла за счёт конвекции воздуха или с помощью теплоотводов;
  • возможность покрытия влагозащитным лаком без попадания его на места, не подлежащие покрытию;
  • свободный доступ к любой ИМС для её монтажа/демонтажа.

Бескорпусные микросхемы и микросборки

Бескорпусная микросхема — это полупроводниковый кристалл, предназначенный для монтажа в гибридную микросхему или микросборку (возможен непосредственный монтаж на печатную плату). Обычно, после монтажа, микросхему покрывают защитным лаком или компаундом с целью предотвратить или снизить влияние негативных факторов окружающей среды на кристалл.

Корпусные микросхемы

Большая часть выпускаемых микросхем предназначена для отправки конечному потребителю, и это вынуждает производителя предпринимать меры по сохранности кристалла и самой микросхемы. Для уменьшения действия окружающей среды на время доставки и хранения у конечного покупателя, полупроводниковые кристаллы разным способом упаковывают.

История различных видов корпусов

Логический элемент, ИМС Texas Instruments SN5451, в корпусе англ. Flat package (FP) изобретённом Y. Tao в 1962 году, за два года до изобретения DIP
Он же, в пластиковом носителе

Самые ранние интегральные схемы упаковывались в плоские керамические корпуса. Такой тип корпусов широко используется военными из-за его надёжности и небольшого размера. Коммерческие микросхемы перешли к корпусам DIP (англ. Dual In-line Package), сначала изготавливавшимися из керамики, а затем из пластика. В 1980-х годах количество контактов СБИС превысило возможности DIP корпусов, что привело к созданию корпусов PGA (англ. pin grid array) и LCC (англ. leadless chip carrier). В конце 80-х, с ростом популярности поверхностного монтажа, появляются корпуса SOIC (англ. Small-Outline Integrated Circuit), имеющие на 30-50 % меньшую площадь чем DIP и на 70 % более тонкие и корпуса PLCC (англ. Plastic leaded chip carrier). В 90-х начинается широкое использование plastic quad flat pack (PQFP) и TSOP (англ. thin small-outline package) для интегральных схем с большим количеством выводов. Для сложных микропроцессоров, особенно для устанавливаемых в сокеты, используются PGA-корпуса. В настоящее время, Intel и AMD перешли от корпусов PGA к LGA (англ. land grid array, разъём с матрицей контактных площадок).

Корпуса BGA (англ. Ball grid array) существуют с 1970-х годов. В 1990-х годах были разработаны корпуса FCBGA (BGA, собранная методом перевернутого кристалла англ. flip-chip), допускающие намного большее количество выводов, чем другие типы корпусов. В FCBGA кристалл монтируется в перевёрнутом виде и соединяется с контактами корпуса через столбики (шарики) припоя. Монтаж методом перевёрнутого кристалла позволяет располагать контактные площадки по всей площади кристалла, а не только по краям.

В настоящее время активно развивается подход с размещением нескольких полупроводниковых кристаллов в едином корпусе, так называемая «Система-в-корпусе» (англ. System In Package, SiP) или на общей подложке, часто керамической, так называемый MCM (англ. Multi-Chip Module).

Корпуса ИМС, производившихся в СССР

ИМС, произведённые в СССР до 1972 года, оформлены в нестандартные корпуса («Посол», «Вага 1Б», «Трапеция», «Тропа» и т. п.); их характеристики приведены в специальной технической документации на них, обычно ТУ.

Корпуса первых советских ИМС соответствовали требованиям ГОСТ 17467-72, который предусматривал четыре типа корпусов:

  1. тип 1: прямоугольный с выводами в пределах основания, перпендикулярно ему,
  2. тип 2: прямоугольный с выводами, расположенными за пределами основания, перпендикулярно ему,
  3. тип 3: круглый с выводами в пределах основания, перпендикулярно ему,
  4. тип 4: прямоугольный с выводами за пределами основания, параллельно плоскости основания.

Для обозначения типоразмера корпуса и его конструкции предусматривалось специальное условное обозначение, состоящее из четырёх элементов:

  1. цифра, обозначающая тип корпуса,
  2. две цифры, от 01 до 99, обозначающие типоразмер,
  3. цифра, обозначающая общее количество выводов,
  4. цифра, обозначающая номер модификации.

Режим и условия монтажа ИМС в РЭА по ОСТ 11 073.062-2001 (разработан ЦКБ Дейтон), с числом перепаек 2.

Цоколёвка ИМС советских и постсоветских лет выпуска часто совпадала со стандартом прототипов — функциональных аналогов серий 74 или 4000.

Чаще всего, массовые серии ИМС, производившиеся в СССР, были упакованы в следующие типы корпусов:

BGA (Ball Grid Array)

Здесь микросхемы памяти, установленные на планку, имеют выводы типа BGA
Номер SOT Количество выводов Габариты корпуса, особенности
SOT1018-1[1] Корпус содержащий 256 шариков. Квадратный корпус со стороной 17 мм, высотой 1,95 мм, шаг шариков 1 мм.

См. также ниже LBGA и LFBGA.

DBS (DIL Bent SIL)

Номер SOT Количество выводов Габариты корпуса, особенности
SOT157-2[2] 9 Ширина 4,5 мм, длина 23,8 мм, высота 12 мм, монтажная высота 17 мм, шаг выводов 2,54 мм
SOT523-1[3] 9 Ширина 2,5 мм, длина 13 мм, высота 14,5 мм, монтажная высота 21,4 мм, шаг выводов 1,27 мм
SOT141-6[4] 13 Ширина 4,5 мм, длина 23,8 мм, высота 12 мм, монтажная высота 17 мм, шаг выводов 1,7 мм
SOT243-1[5] 17 Ширина 4,5 мм, длина 23,8 мм, высота 12 мм, монтажная высота 17 мм, шаг выводов 1,27 мм
SOT411-1[6] 23 Ширина 4,45 мм, длина 30,15 мм, высота 12 мм, монтажная высота 16,9 мм, шаг выводов 1,27 мм

См. также ниже SIL

DIL (Dual In-Line)

Номер SOT Количество выводов Габариты корпуса, особенности
SOT97-1[7] 8 300 мил, плоский прямоугольный корпус (англ. slim corner leads), ширина 0.25", длина 0.375", высота 0.17", шаг выводов 0.1" Совместимость с IEC 050G01, JEDEC MO-001, JEITA SC-504-8
SOT27-1[8] 14 300 мил, ширина 0.25", длина 0.75", высота 0.17", шаг выводов 0.1" Совместимость с IEC 050G04, JEDEC MO-001, JEITA SC-501-14
SOT38-1[9] 16 300 мил, длинный корпус, ширина 0.25", длина 0.85", высота 0.19", шаг выводов 0.1" Совместимость с IEC 050G09, JEDEC MO-001, JEITA SC-503-16
SOT38-4[10] 16 300 мил, короткий корпус, плоский прямоугольный корпус, ширина 0.25", длина 0.75", высота 0.17", шаг выводов 0.1"
SOT146-1[11] 20 300 мил, ширина 0.245", длина 1.0525", высота 0.17", шаг выводов 0.1" Совместимость с JEDEC MS-001, JEITA SC-603
SOT101-1[12] 24 600 мил, широкий/длинный корпус, ширина 0.55", длина 1.25", высота 0.2", шаг выводов 0.1" Совместимость с IEC 051G02, JEDEC MO-015, JEITA SC-509-24
SOT222-1[13] 24 300 мил, узкий/длинный корпус, ширина 0.2555", длина 1.248", высота 0.185", шаг выводов 0.1" Совместимость с JEDEC MS-001
SOT117-1[14] 28 600 мил, короткий корпус, ширина 0.55", длина 1.375", высота 0.2", шаг выводов 0.1" Совместимость с IEC 051G05, JEDEC MS-015, JEITA SC-510-28
SOT117-2[15] 28 600 мил, длинный корпус, ширина 0.5525", длина 1.4375", высота 0.2", шаг выводов 0.1" Совместимость с IEC 051G06, JEDEC MS-011, JEITA SC-510-28
SOT129-1[16] 40 600 мил, ширина 0.55", длина 2.0475", высота 0.19", шаг выводов 0.1" Совместимость с IEC 051G08, JEDEC MO-015, JEITA SC-511-40
SOT240-1[17] 48 600 мил, ширина 0.545", длина 2.44", высота 0.19", шаг выводов 0.1" Совместимость с JEDEC MS-011

См. также ниже HDIP

DQFN (Depopulated Quad Flat-pack, безвыводной)

Также, варианты:

DHVQFN (Depopulated Heatsink Very-thin Quad Flat-pack, безвыводной).
DHXQFN (Depopulated Heatsink eXtremely-thin Quad Flat-pack, безвыводной).
Номер SOT Количество выводов Габариты корпуса, особенности
SOT762-1[18] 14 Очень тонкий, с металлической стороной, ширина 2,5 мм, длина 3 мм, высота 1 мм, шаг выводов 0,5 мм Совместимость с JEDEC MO-241
SOT763-1[19] 16 Очень тонкий, с металлической стороной, ширина 2,5 мм, длина 3,5 мм, высота 1 мм, шаг выводов 0,5 мм Совместимость с JEDEC MO-241
SOT764-1[20] 20 Очень тонкий, с металлической стороной, ширина 2,5 мм, длина 4,5 мм, высота 1 мм, шаг выводов 0,5 мм Совместимость с JEDEC MO-241
SOT1045-1[21] 20 Экстремально тонкий, без металлической стороны, ширина 2,5 мм, длина 4,5 мм, высота 0,5 мм, шаг выводов 0,5 мм
SOT815-1[22] 24 Очень тонкий, с металлической стороной 3,5 мм, длина 5,5 мм, высота 1 мм, шаг выводов 0,5 мм

HBCC (Heatsink Bottom Chip Carrier)

англ. Heat sink — английское название вентиляторного охладителя.

Номер SOT Количество выводов Габариты корпуса, особенности
SOT564-1[23] 24 Квадратный корпус со стороной 4 мм, высота 0,8 мм, шаг выводов 0,5 мм Совместимость с JEDEC MO-217

HDIP (Heat-dissipating Dual In-line Package)

Номер SOT Количество выводов Габариты корпуса, особенности
SOT398-1[24] 18 Ширина 6,35 мм, длина 21,55 мм, высота 4,7 мм, шаг выводов 2,54 мм

HSOP (Heatsink Small Outline Package)

Номер SOT Количество выводов Габариты корпуса, особенности
SOT566-3[25] 24 Низкопосадочная высота (англ. Low stand-off height), ширина 11 мм, длина 15,9 мм, высота 3,5 мм, шаг выводов 1 мм

HTSSOP (Heatsink Thin Shrink Small Outline Package)

Номер SOT Количество выводов Габариты корпуса, особенности
SOT527-1[26] 20 Ширина 4,4 мм, длина 6,9 мм, высота 1,1 мм, шаг выводов 0,65 мм Совместимость с JEDEC MO-153
SOT1172-2[27] 28 Ширина 4,4 мм, длина 9,7 мм, высота 1,1 мм, шаг выводов 0,65 мм Совместимость с JEDEC MO-153
SOT549-1[28] 32 Ширина 6,1 мм, длина 11 мм, высота 1,1 мм, шаг выводов 0,65 мм Совместимость с JEDEC MO-153

HUQFN (Heatsink Ultra-thin Quad Flat-pack, безвыводной)

Номер SOT Количество выводов Габариты корпуса, особенности
SOT1008-1[29] 60 Ширина 5 мм, длина 5 мм, высота 0,6 мм, шаг выводов 0,5 мм
SOT1025-1[30] 60 Ширина 4 мм, длина 5 мм, высота 0,6 мм, шаг выводов 0,5 мм

HVQFN (Heatsink Very-thin Quad Flat-pack, безвыводной)

Номер SOT Количество выводов Габариты корпуса, особенности
SOT629-1[31] 16 Квадратный корпус со стороной 4 мм, высота 1 мм, шаг выводов 0,65 мм Совместимость с JEDEC MO-220
SOT758-1[32] 16 Квадратный корпус со стороной 3 мм, высота 1 мм, шаг выводов 0,5 ммm Совместимость с JEDEC MO-220
SOT758-3[33] 16 Срезанные углы, упрочненный квадратный корпус со стороной 3 мм, высота 0,9 мм, шаг выводов 0,5 мм Совместимость с JEDEC MO-220
SOT662-1[34] 20 Квадратный корпус со стороной 5 мм, высота 1 мм, шаг выводов 0,65 мм Совместимость с JEDEC MO-220
SOT910-1[35] 20 Ширина 5 мм, длина 6 мм, высота 1 мм, шаг выводов 0,8 мм Совместимость с JEDEC MO-220
SOT616-1[36] 24 Квадратный корпус со стороной 4 мм, высота 1 мм, шаг выводов 0,5 мм Совместимость с JEDEC MO-220
SOT905-1[37] 24 Квадратный корпус со стороной 3 мм, высота 0,85 мм, шаг выводов 0,4 мм
SOT788-1[38] 28 Квадратный корпус со стороной 6 мм, высота 1 мм, шаг выводов 0,5 мм Совместимость с JEDEC MO-220
SOT617-1[39] 32 Квадратный корпус со стороной 5 мм, высота 1 мм, шаг выводов 0,5 мм Совместимость с JEDEC MO-220
SOT617-3[40] 32 Большой радиатор, Квадратный корпус со стороной 5 мм, высота 1 мм, шаг выводов 0,5 мм Совместимость с JEDEC MO-220
SOT619-1[41] 48 Квадратный корпус со стороной 7 мм, высота 1 мм, шаг выводов 0,5 мм Совместимость с JEDEC MO-220
SOT778-3[42] 48 Квадратный корпус со стороной 6 мм, высота 1 мм, шаг выводов 0,4 мм
SOT778-4[43] 48 Большой радиатор, Квадратный корпус со стороной 6 мм, высота 1 мм, шаг выводов 0,4 мм
SOT684-1[44] 56 Квадратный корпус со стороной 8 мм, высота 1 мм, шаг выводов 0,5 мм Совместимость с JEDEC MO-220
SOT804-2[45] 64 Квадратный корпус со стороной 9 мм, высота 1 мм, шаг выводов 0,5 мм Совместимость с JEDEC MO-220

HVSON (Heatsink Very-thin Small Outline; No-leads)

Номер SOT Количество выводов Габариты корпуса, особенности
SOT908-1[46] 8 Квадратный корпус со стороной 3 мм, высота 1 мм, шаг выводов 0,5 мм Совместимость с JEDEC MO-229
SOT909-1[47] 8 Квадратный корпус со стороной 4 мм, высота 1 мм, шаг выводов 0,8 мм Совместимость с JEDEC MO-229
SOT650-1[48] 10 Квадратный корпус со стороной 3 мм, высота 1 мм, шаг выводов 0,5 мм Совместимость с JEDEC MO-229

HWQFN (Heatsink Very-Very-thin Quad Flat-pack; No-leads)

Номер SOT Количество выводов Габариты корпуса, особенности
SOT994-1[49] 24 Квадратный корпус со стороной 4 мм, высота 0,8 мм, шаг выводов 0,5 мм Совместимость с JEDEC MO-220
SOT1180-1[50] 32 Ширина 35 мм, длина 65 мм, высота 0,8 мм, шаг выводов 0,4 мм
SOT1031-1[51] 48 Квадратный корпус со стороной 7 мм, высота 0,8 мм, шаг выводов 0.5 мм
SOT1033-1[52] 56 Ширина 5 мм, длина 11 мм, высота 0,8 мм, шаг выводов 0,5 мм

См. также HUQFN, HVQFN и HXQFN.

HWSON (Heatsink Very-Very-thin Small Outline package; No leads)

Номер SOT Количество выводов Габариты корпуса, особенности
SOT1069-1[53] 8 Прямоугольный термоустойчивый корпус, ширина 3 мм, длина 2 мм, высота 0,8 мм, шаг выводов 0,5 мм Совместим с JEDEC MO-229
SOT1069-2[54] 8 Термоустойчивый корпус со срезанными углами ширина 3 мм, длина 2 мм, высота 0,8 мм, шаг выводов 0,5 мм Совместим с JEDEC MO-229

См. также HVSON и HXSON.

HXQFN (Heatsink eXtremely-thin Quad Flat-pack; No-leads)

См. также HUQFN, HVQFN и HWQFN.

HXSON (Heatsink eXtremely Small Outline Package; No leads)

См. также HVSON и HWSON.

LBGA (Low-profile Ball Grid Array)

См. также BGA и LFBGA.

LFBGA (Low-profile Fine-pitch Ball Grid Array)

См. также BGA и LBGA.

LQFP (Low-profile Quad Flat Pack)

PicoGate

См. также TSSOP и VSSOP.

PLCC (Plastic Leaded Chip Carrier)

PLCC (Plastic Leaded Chip Carrier) и СLCC (Ceramic Leaded Chip Carrier) представляют собой квадратный корпус с расположенными по краям контактами, предназначенный для установки в специальную панель (часто называемую «кроваткой»). В настоящее время широкое распространение получили микросхемы флэш-памяти в корпусе PLCC, используемые в качестве микросхемы BIOS на системных платах.

Zilog Z80 в 44-контактном QFP корпусе.

QFP (Quad Flat Package)

QFP (от англ. Quad Flat Package) — семейство корпусов микросхем, имеющих планарные выводы, расположенные по всем четырём сторонам.

Микросхемы в таких корпусах предназначены только для поверхностного монтажа; установка в разъём или монтаж в отверстия штатно не предусмотрен, хотя переходные коммутационные устройства существуют. Количество выводов QFP микросхем обычно не превышает 200, с шагом от 0,4 до 1,0 мм.

QSOP (Quarter Size Outline Package)

RBS (Rectangular-Bent Single in-line)

См. также SIL.

SIL(Single In-Line)

См. также DBS и RDS.

Микросхемы в корпусе SOIC

SO (Small Outline)

См. также HSOP.

SSOP-II (Shrink Small Outline Package)

SSOP-III (Shrink Small Outline Package)

TFBGA (Thin Fine-pitch Ball Grid Array)

TQFP (Thin Quad Flat Package)

TSSOP-I (Thin Shrink Small Outline Package)

См. также HT SSOP.

TSSOP-II (Thin Shrink Small Outline Package)

См. также HT SSOP и TVSOP.

TVSOP (Thin Very Small Outline Package)

VFBGA (Very thin Fine-pitch Ball Grid Array)

VSO (Very Small Outline)

VSSOP (Very thin Shrink Small Outline Package)

XQFN (eXtremely thin Quad Flat package; No leads)

XSON (eXtremely thin Small Outline package; No leads)

Примечания:

  • Некоторые из приведённых в таблице корпусов известны под названием MicroPak.
  • Некоторые из приведённых в таблице корпусов совместимы с NanoStar.
  • Корпус с шагом выводов 0,5 мм («стандартный корпус» — 6 выводов) обозначен индексом GM
  • Корпус с шагом выводов 0,5 мм («стандартный корпус» — 8 выводов) обозначен индексом GT
  • Корпус с шагом выводов 0,5 мм («широкий корпус») обозначен индексом GD
  • Корпус с шагом выводов 0,35 мм («короткий корпус») обозначен индексом GF
  • Корпус с шагом выводов 0,35 мм, высотой 0,35 мм («короткий и тонкий корпус») обозначен индексом GS
  • Корпус с шагом выводов 0,3 мм, высотой 0,35 мм («очень короткий и тонкий корпус») обозначен индексом GN

См. также

Примечания

  1. Packages :: NXP Semiconductors. Дата обращения: 9 декабря 2017. Архивировано 10 декабря 2017 года.
  2. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  3. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 20 октября 2016 года.
  4. Packages :: NXP Semiconductors
  5. Packages :: NXP Semiconductors
  6. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  7. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  8. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  9. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  10. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  11. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  12. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  13. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  14. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  15. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  16. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  17. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  18. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 20 октября 2016 года.
  19. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  20. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  21. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  22. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  23. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  24. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  25. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  26. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  27. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 20 октября 2016 года.
  28. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  29. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  30. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  31. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  32. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  33. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  34. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  35. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  36. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано из оригинала 25 апреля 2017 года.
  37. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  38. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  39. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 4 августа 2016 года.
  40. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  41. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  42. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  43. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  44. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  45. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  46. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  47. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  48. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  49. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  50. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  51. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  52. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  53. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.
  54. Packages :: NXP Semiconductors. Дата обращения: 17 октября 2018. Архивировано 25 апреля 2017 года.

Ссылки

Эта страница в последний раз была отредактирована 20 сентября 2023 в 11:05.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).