Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

-метод Уильямса — метод факторизации чисел с помощью последовательностей чисел Люка, разработанный Хью Уильямсом в 1982 году. Алгоритм находит простой делитель числа . Аналогичен -методу Полларда, но использует разложение на множители числа . Имеет хорошие показатели скорости подсчёта только в случае, когда легко факторизуется. Как правило, на практике реализуется не часто из-за невысокого процента подобных случаев[1].

Последовательности чисел Люка

Для дальнейших выкладок нам понадобится ввести последовательности чисел Люка и перечислить некоторые их свойства.

Пусть и  — некоторые фиксированные целые числа. Последовательности чисел Люка определяются как[1]:

Пусть также

Последовательности имеют следующие свойства:

Для доказательства данных свойств рассмотрим формулы последовательности чисел Люка:

и

где и  — корни характеристического многочлена

Используя явные формулы и теорему Виетта:

получаем выражения и

Далее выделяем ещё одно свойство:

Если НОД и то: и откуда

И затем формулируем теорему:

Если p — нечётное простое число, и символ Лежандра , то:

Доказательство данной теоремы трудоёмкое, и его можно найти в книге Д. Г. Лемера[2].

Первый шаг алгоритма

Графическое представление первого шага

Пусть  — простой делитель факторизуемого числа , и выполнено разложение:

где  — простые числа.

Пусть

Введём число где степени выбираются таким образом, что

Тогда [1]

Далее, согласно теореме если НОД то

И, следовательно, НОД то есть найден делитель искомого числа [1].

Стоит обратить внимание, что числа не известны на начальном этапе задачи. Поэтому для упрощения задачи сделаем следующее: так как то по свойству (2) Далее воспользуемся свойством (6) и получим:

Таким образом, мы без потери общности можем утверждать, что [1]

Далее пользуемся теоремой из которой делаем вывод, что

И, следовательно, [1]

Теперь выбираем некоторое число такое, что НОД

Обозначаем:

Окончательно, нужно найти НОД[1]

Для поиска поступаем следующим образом[1]:

1) раскладываем в двоичный вид: где .

2) вводим последовательность натуральных чисел . При этом ;

3) ищем пары значений по следующему правилу:

при этом

4) значения ищутся по правилам (которые следуют из свойств и определения последовательности чисел Люка):

.

Для значений, введённых по умолчанию, то есть получаем результат:

374468

Делаем проверку этого значения. Для этого считаем НОД НОД и .

Если мы в первом шаге неудачно выбрали числа , то есть получилось так, что НОД, то тогда нужно переходить ко второму шагу. Иначе — работа завершена[1].

Второй шаг алгоритма

Графическое представление второго шага

Пусть число имеет некоторый простой делитель, больший чем , но меньший некоторого , то есть:

, где

Вводим последовательность простых чисел .

Вводим ещё одну последовательность:

Далее определяем:

.

Используя свойство , получаем первые элементы:

.

Далее используем свойство и получаем:

.

Таким образом, мы вычисляем

Далее считаем:

НОД для

Как только получаем , то прекращаем вычисления[1].

Для значений, введённых по умолчанию, то есть получаем результат:

139,

что является верным ответом.

Сравнение скорости работы

Автором данного метода были проведены тесты и методов на машине AMDAHL 470-V7 на 497 различных числах, которые показали, что в среднем первый шаг алгоритма работает примерно в 2 раза медленнее первого шага алгоритма , а второй шаг — примерно в 4 раза медленнее[1].

Применение

В связи с тем, что -метод факторизации работает быстрее, -метод применяется на практике очень редко[1].

Рекорды

На данный момент (27.09.2023) три самых больших простых делителя[3], найденных методом , состоят из 60, 55 и 53 десятичных цифр.

Кол-во цифр p Делитель числа Найден (кем) Найден (когда) B B2
60 725516237739635905037132916171116034279215026146021770250523 A. Kruppa

P. Montgomery

31.10.2007
55 1273305908528677655311178780176836847652381142062038547 P. Leyland 16.05.2011
53 60120920503954047277077441080303862302926649855338567 P. Leyland 26.02.2011

Здесь  — 2366-й член последовательности чисел Люка.

Примечания

  1. 1 2 3 4 5 6 7 8 9 10 11 12 Williams, 1982.
  2. Lehmer, 1930.
  3. Record Factors Found By The p+1 Method. Дата обращения: 13 декабря 2013. Архивировано 18 декабря 2013 года.

Литература

  • Williams H. C. A p+1 method of factoring (англ.) = A p+1 method of factoring // American Mathematical Society. — 1982. — Т. 39, вып. 159. — С. 225—234. — ISSN 00255718.
  • D. H. Lehmer. An extended theory of Lucas' functions (англ.) = An extended theory of Lucas' functions // Ann. of Math.. — 1930. — Т. 31, вып. 2. — С. 419—448.
  • Ишмухаметов Ш. Т. Методы факторизации натуральных чисел: Учебное пособие. — Казань: Казанский Университет, 2011. — С. 60—61. — 190 с.

Ссылки

Эта страница в последний раз была отредактирована 27 сентября 2023 в 12:35.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).