Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Эллиптическая функция

Из Википедии — свободной энциклопедии

Эллиптическая функция — в комплексном анализе периодическая в двух направлениях функция, заданная на комплексной плоскости. Эллиптические функции можно рассматривать как аналоги тригонометрических (имеющих только один период). Исторически, эллиптические функции были открыты как функции, обратные эллиптическим интегралам.

Определение

Эллиптической функцией называют такую мероморфную функцию , определённую на области , для которой существуют два ненулевых комплексных числа и , таких что

а также частное не является действительным числом.

Из этого следует, что для любых целых и

.

Любое комплексное число , такое что

называют периодом функции . Если периоды и таковы, что любое может быть записано как

то и называют фундаментальными периодами. Каждая эллиптическая функция обладает парой фундаментальных периодов.

Параллелограмм с вершинами в , , , называется фундаментальным параллелограммом.

Свойства

  • Не существует отличных от констант целых эллиптических функций (первая теорема Лиувилля).
  • Если эллиптическая функция не имеет полюсов на границе параллелограмма , то сумма вычетов во всех полюсах, лежащих внутри , равна нулю (вторая теорема Лиувилля).
  • Любая эллиптическая функция с периодами и может быть представлена в виде
где h, g — рациональные функции,  — функция Вейерштрасса с теми же периодами, что и у . Если при этом является чётной функцией, то её можно представить в виде , где h рациональна.
  • Эллиптические функции неэлементарны, это было доказано Якоби в 1830-х годах.

См. также

Литература

  1. Эллиптические функции // Кнэпп Э. Эллиптические кривые. — М.: Факториал Пресс, 2004.
  2. Глава 11 // Привалов И. И. Введение в теорию функций комплексного переменного. — М.: Государственное издание физико-математической литературы, 1960.
Эта страница в последний раз была отредактирована 28 апреля 2022 в 17:19.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).