Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Характер представления группы

Из Википедии — свободной энциклопедии

Характер представления группы — функция на группе, возвращающая след (сумму диагональных элементов) матрицы, соответствующей данному элементу в представлении[1][2].

Обычно обозначаются буквой [3].

Изучением представлений через их характеры занимается теория характеров.

Определение

Если — конечномерное представление группы , то характер этого представления — это функция из во множество комплексных чисел, заданная следом линейного преобразования, соответствующего элементу . Вообще говоря, след не является гомоморфизмом, а множество следов не образует группы.

Свойства

  • Характеры эквивалентных представлений совпадают[2].
  • Изоморфные представления имеют одинаковые характеры[4].
  • Характеры неприводимых не изоморфных между собой представлений конечной группы образуют ортонормированную систему функций[2][5].
  • Скалярный квадрат характера неприводимого представления равен единице[2].
  • Характер приводимого представления равен сумме характеров всех неприводимых представлений, которые в нем встречаются[2][4].
  • Два представления, имеющие одинаковые характеры, эквивалентны[2][6].
  • Если представление приводимо, то скалярный квадрат его характера больше единицы[7].
  • У взаимно-сопряжённых элементов группы и характеры равны[7].
  • Совокупность характеров всех неприводимых представлений является полной в линейном пространстве функций, определённых на классах сопряжённых элементов[7].
  • Для любого элемента группы [8].
  • Для того, чтобы представление было неприводимым, необходимо и достаточно, чтобы скалярный квадрат его характера был равен [9].

Примечания

Литература

  • Любарский Г. Я. Теория групп и её применение в физике. — М.: Наука, 1958. — 354 с.
  • Ван дер Варден Б. Л. Метод теории групп в квантовой механике. — М.: Едиториал УРСС, 2004. — 200 с.
  • Головина Л. И. Линейная алгебра и некоторые её приложения. — М.: Наука, 1975. — 407 с.
Эта страница в последний раз была отредактирована 2 ноября 2021 в 09:51.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).