Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Рациональная поверхность

Из Википедии — свободной энциклопедии

Рациональная поверхность — это поверхность, бирационально эквивалентная проективной плоскости, или, другими словами, рациональное многообразие[en] размерности два. Рациональные поверхности являются простейшими из примерно 10 классов поверхностей классификации Энрикеса — Кодаиры комплексных поверхностей, и это были первые исследованные поверхности.

Структура

Любую неособую рациональную поверхность можно получить путём неоднократного раздутия[en] минимальной рациональной поверхности. Минимальными рациональными поверхностями являются проективная плоскость и поверхности Хирцебруха[en] Σr для r = 0 или r ≥ 2.

Инварианты: Все плюрироды[en] равны 0 и фундаментальная группа тривиальна.

Ромб Ходжа:

                 1
           0          0
      1        1+n        1,
           0          0
                 1

где n равен 0 для проективной плоскости, 1 для поверхностей Хирцебруха[en] и больше 1 для других рациональных поверхностей.

Группа Пикара[en] является нечётной унимодулярной решёткой I1,n, за исключением поверхностей Хирцебруха[en] Σ2m, для которых это чётная унимодулярная решётка II1,1.

Теорема Кастельнуово

Гвидо Кастельнуово доказал, что любая комплексная поверхность, для которой q и P2 (иррегулярность и второй плюрирод) равны нулю, является рациональной. Это используется в классификации Энрикеса — Кодаиры для распознавания рациональных поверхностей. Зарисский[1] доказал, что теорема Кастельнуово верна также для полей положительной характеристики.

Из теоремы Кастельнуово следует также, что любая унирациональная[en] комплексная поверхность рациональна. Большинство унирациональных комплексных многообразий размерности 3 и выше не являются рациональными. Для характеристики p > 0 Зарисский[1] нашёл пример унирациональных поверхностей (поверхности Зарисского[en]), не являющихся рациональными.

Одно время было неясно, являются комплексные поверхности с нулевыми q и P1 рациональными или нет, но Федериго Энрикес нашёл контрпример (поверхность Энрикеса[en]).

Примеры рациональных поверхностей

  • Поверхности Бордига[en]: Вложение степени 6 проективной плоскости в P4, определённое 10 точками в общем положении.
  • Поверхности Шатле[en]
  • Поверхности Кобла[en]
  • Кубические поверхности. Неособые кубические поверхности изоморфны раздутию проективной плоскости в 6 точках, и являются плоскостями Фано. Существуют именованные примеры — кубика Ферма, кубическая узловая поверхность Кэли[en] и диагональная поверхность Клебша[en].
  • Поверхности дель Пеццо[en] (поверхности Фано)
  • Поверхность Эннепера
  • Поверхности Хирцебруха[en] Σn
  • P1×P1. Произведение двух проективных прямых является поверхностью Хирцебруха Σ0.
  • Проективная плоскость
  • Поверхность Сегре[en]. Пересечение двух квадрик. Поверхность изоморфна проективной плоскости, раздутой в 5 точках.
  • Поверхность Штайнера[en]. Поверхность в P4 с особенностями, которая бирациональна проективной плоскости.
  • Поверхности Вайта[en], обобщение поверхностей Бордига.
  • Поверхность Веронезе. Вложение проективной плоскости в P5.

См. также

  • Список алгебраических поверхностей[en]

Примечания

Литература

Эта страница в последний раз была отредактирована 10 ноября 2021 в 12:41.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).