Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Иод-131
Схема распада иода-131 (упрощённая)

Схема распада иода-131 (упрощённая)
Название, символ Иод-131, 131I
Альтернативные названия радиойод
Нейтронов 78
Свойства нуклида
Атомная масса 130,9061246(12)[1] а. е. м.
Дефект массы −87 444,4(11)[1] кэВ
Удельная энергия связи (на нуклон) 8422,309(9)[1] кэВ
Период полураспада 8,02070(11)[2] суток
Продукты распада 131Xe
Родительские изотопы 131Te (β)
Спин и чётность ядра 7/2+[2]
Канал распада Энергия распада
β 0,9708(6)[1] МэВ
Таблица нуклидов

Йод-131 (иод-131, 131I) — искусственный радиоактивный изотоп йода. Период полураспада около 8 суток, механизм распада — бета-распад. Впервые получен в 1938 году в Беркли.

Является одним из значимых продуктов деления ядер урана, плутония и тория, составляя до 3 % продуктов деления ядер. При ядерных испытаниях и авариях ядерных реакторов является одним из основных короткоживущих радиоактивных загрязнителей природной среды. Представляет большую радиационную опасность для человека и животных в связи со способностью накапливаться в организме, замещая природный иод.

Применяется в медицине для радиойодтерапии щитовидной железы.

Удельная активность ~4,6⋅1015 Бк на грамм.

Образование и распад

Иод-131 является дочерним продуктом β-распада изотопа 131Te (период полураспада последнего составляет 25,0(1)[2] мин):

В свою очередь теллур-131 образуется в природном теллуре при поглощении им нейтронов стабильным природным изотопом теллур-130, концентрация которого в природном теллуре составляет 34 % ат.:

131I имеет период полураспада 8,02 суток и является бета- и гамма-радиоактивным. Он распадается с испусканием β-частиц с максимальной энергией 0,807 МэВ (наиболее вероятны каналы бета-распада с максимальными энергиями 0,248, 0,334 и 0,606 МэВ и вероятностями соответственно 2,1 %, 7,3 % и 89,9 %), а также с излучением γ-квантов с энергиями от 0,08 до 0,723 МэВ (наиболее характерная гамма-линия, используемая на практике для идентификации иода-131, имеет энергию 364,5 кэВ и излучается в 82 % распадов)[3]; излучаются также конверсионные электроны и рентгеновские кванты. При распаде 131I превращается в стабильный 131Xe:

Получение

Основные количества 131I получают в ядерных реакторах путём облучения теллуровых мишеней тепловыми нейтронами. Облучение природного теллура позволяет получить почти чистый иод-131 как единственный конечный изотоп с периодом полураспада более нескольких часов.

В России 131I получают облучением на Ленинградской АЭС в реакторах РБМК[4]. Химическое выделение 131I из облученного теллура осуществляется в НИФХИ им. Л. Я. Карпова. Объём производства позволяет получить изотоп в количестве, достаточным для выполнения 2…3 тысяч медицинских процедур в неделю.

Иод-131 в окружающей среде

Выброс иода-131 в окружающую среду происходит в основном в результате ядерных испытаний и аварий на предприятиях атомной энергетики. В связи с коротким периодом полураспада, через несколько месяцев после такого выброса содержание иода-131 опускается ниже порога чувствительности детекторов.

Иод-131 считается наиболее опасным для здоровья людей нуклидом, образующимся при делении ядер. Это объясняется следующим:

  1. Относительно высоким содержанием иода-131 среди осколков деления (около 3 %).
  2. Период полураспада (8 суток), с одной стороны, достаточно велик, чтобы нуклид распространился по большим площадям, а с другой стороны, достаточно мал, чтобы обеспечить очень высокую удельную активность изотопа — примерно 4,5 ПБк.
  3. Высокая летучесть. При любых авариях ядерных реакторов в первую очередь в атмосферу улетучиваются инертные радиоактивные газы, затем — иод. Например, при аварии на ЧАЭС из реактора было выброшено 100 % инертных газов, 20 % иода, 10—13 % цезия и всего 2—3 % остальных элементов[источник не указан 2484 дня].
  4. Иод очень подвижен в природной среде и практически не образует нерастворимых соединений.
  5. Иод является жизненно важным микроэлементом, и, в то же время, — элементом, концентрация которого в пище и воде невелика. Поэтому все живые организмы выработали в процессе эволюции способность накапливать иод в своем теле.
  6. У человека бо́льшая часть иода в организме концентрируется в щитовидной железе, но имеющей небольшую массу по сравнению с массой тела (12—25 г). Поэтому даже относительно небольшое количество радиоактивного йода, поступившего в организм, приводит к высокому локальному облучению щитовидной железы.

Основным источником загрязнения атмосферы радиоактивным иодом являются атомные электростанции и фармакологическое производство[5].

Радиационные аварии

Оценка по радиологическому эквиваленту активности иода-131 принята для определения уровня ядерных событий по шкале INES[6].

Авария на АЭС Фукусима I в марте 2011 вызвала значительный рост содержания 131I в продуктах питания, морской и водопроводной воде в местностях вокруг АЭС. Анализ воды в дренажной системе 2-го энергоблока показал содержание 131I, равное 300 кБк/см3, что превышает установленную в Японии норму по отношению к питьевой воде в 7,5 миллионов раз[7].

Санитарные нормативы по содержанию иода-131

Согласно принятым в России нормам радиационной безопасности НРБ-99/2009, решение об ограничении потребления продуктов питания обязательно принимается при удельной активности иода-131 в них, равной 10 кБк/кг (при удельной активности от 1 кБк/кг такое решение может приниматься по усмотрению уполномоченного органа).

Для персонала, работающего с источниками радиации, предел годового поступления с воздухом иода-131 составляет 2,6⋅106 Бк в год (дозовый коэффициент 7,6⋅10−9 Зв/Бк), а допустимая среднегодовая объёмная активность в воздухе 1,1⋅103 Бк/м3 (это относится ко всем соединениям иода, кроме элементарного иода, для которого установлены ограничения соответственно 1,0⋅106 Бк в год и 4,0⋅102 Бк/м3, и метилиода CH3I — 1,3⋅106 Бк в год и 5,3⋅102 Бк/м3). Для критических групп населения (дети в возрасте 1—2 года) установлены ограничение на поступление иода-131 с воздухом 1,4⋅104 Бк/год, допустимая среднегодовая объемная активность в воздухе 7,3 Бк/м3, допустимый предел поступления с пищей 5,6⋅103 Бк/год; дозовый коэффициент для этой группы населения составляет 7,2⋅10−8 Зв/Бк при поступлении иода-131 с воздухом и 1,8⋅10−7 Зв/Бк — при поступлении с пищей.

Для взрослого населения при поступлении иода-131 с водой дозовый коэффициент составляет 2,2⋅10−8 Зв/Бк, а уровень вмешательства[8] 6,2 Бк/л. Для использования открытого источника I-131 его минимально значимая удельная активность (при превышении которой требуется разрешение органов исполнительной власти) равна 100 Бк/г; минимально значимая активность в помещении или на рабочем месте равна 1⋅106 Бк, ввиду чего иод-131 относится к группе В радионуклидов по радиационной опасности (из четырёх групп, от А до Г, наиболее опасной является группа А).

При возможном присутствии иода-131 в воде (в зонах наблюдения радиационных объектов I и II категории по потенциальной опасности) определение его удельной активности в воде является обязательным[9].

Профилактика

В случае попадания йода-131 в организм возможно вовлечение его в процесс обмена веществ. При этом йод задержится в организме на длительное время, увеличивая продолжительность облучения. У человека наибольшее накопление йода наблюдается в щитовидной железе. Чтобы минимизировать накопление радиоактивного йода в организме при радиоактивном загрязнении окружающей среды принимают препараты, насыщающие обмен веществ обычным стабильным йодом. Например, препарат йодида калия. При приеме калия йодида одновременно с поступлением радиоактивного йода защитный эффект составляет около 97 %; при приеме за 12 и 24 ч до контакта с радиоактивным загрязнением — 90 % и 70 % соответственно, при приеме через 1 и 3 ч после контакта — 85 % и 50 %, более чем через 6 ч — эффект незначительный.[источник не указан 2444 дня]

Применение в медицине

Иод-131, как и некоторые другие радиоактивные изотопы иода (125I, 132I) применяются в медицине для диагностики и лечения некоторых заболеваний щитовидной железы[10][11]:

Изотоп применяется для диагностики распространения и лучевой терапии нейробластомы, которая также способна накапливать некоторые препараты иода.

В России фармпрепараты на основе 131I производит обнинский филиал Научно-исследовательского физико-химического института имени Л. Я. Карпова[15].

Согласно нормам радиационной безопасности НРБ-99/2009, принятым в России, выписка из клиники пациента, лечившегося с использованием иода-131, разрешается при снижении общей активности этого нуклида в теле пациента до уровня 0,4 ГБк[9].

Препараты : йобенгуан-131.

См. также

Примечания

  1. 1 2 3 4 Audi G., Wapstra A. H., Thibault C. The AME2003 atomic mass evaluation (II). Tables, graphs, and references (англ.) // Nuclear Physics A. — 2003. — Vol. 729. — P. 337—676. — doi:10.1016/j.nuclphysa.2003.11.003. — Bibcode2003NuPhA.729..337A.
  2. 1 2 3 Audi G., Bersillon O., Blachot J., Wapstra A. H. The NUBASE evaluation of nuclear and decay properties // Nuclear Physics A. — 2003. — Т. 729. — С. 3—128. — doi:10.1016/j.nuclphysa.2003.11.001. — Bibcode2003NuPhA.729....3A.Открытый доступ
  3. WWW Table of Radioactive Isotopes (англ.) (недоступная ссылка — история). — Свойства 131I. Дата обращения: 27 марта 2011.
  4. Ленинградская АЭС начала производство нового изотопа, необходимого для лечения онкологических заболеваний. Дата обращения: 16 июля 2017. Архивировано из оригинала 11 июля 2017 года.
  5. "В воздухе над Германией обнаружен радиоактивный йод". Germania.one. Архивировано 2 марта 2017. Дата обращения: 1 марта 2017.
  6. INES Руководство для пользователей международной шкалы ядерных и радиологических событий. — Вена: МАГАТЭ, 2010. — 235 с. Архивировано 15 августа 2019 года.
  7. В японских школах ищут радиацию. dni.ru. Дата обращения: 5 апреля 2011. Архивировано 10 апреля 2011 года.
  8. Уровень вмешательства — удельная активность, ниже которой никаких специальных мер к ограничению потребления принимать не требуется.
  9. 1 2 «Нормы радиационной безопасности (НРБ-99/2009). Санитарные правила и нормативы СанПин 2.6.1.2523-09» Архивная копия от 24 марта 2012 на Wayback Machine.
  10. Ксензенко В. И., Стасиневич Д. С. Иод // Химическая энциклопедия : в 5 т. / Гл. ред.  И. Л. Кнунянц. — М.:  Советская энциклопедия, 1990. — Т. 2: Даффа — Меди. — С. 251—252. — 671 с. — 100 000 экз. — ISBN 5-85270-035-5.
  11. Лечение радиоактивным йодом. Дата обращения: 15 октября 2017. Архивировано 1 октября 2017 года.
  12. Тиреотоксикоз: лечение радиоактивным йодом. Дата обращения: 15 октября 2017. Архивировано 15 октября 2017 года.
  13. Радиойодтерапия — лечение радиоактивным йодом. Дата обращения: 15 октября 2017. Архивировано 15 октября 2017 года.
  14. Москалев Ю. И. Радиобиология инкорпорированных радионуклидов. — М.: Энегроатомиздат, 1989. — С. 207.
  15. Обнинский филиал НИФХИ им. Л. Я. Карпова отмечает 50 лет со дня пуска реактора. Дата обращения: 15 октября 2017. Архивировано 15 октября 2017 года.

Ссылки

Эта страница в последний раз была отредактирована 4 мая 2024 в 18:25.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).