Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Дефе́кт ма́ссы (англ. mass defect) ΔM — разность между суммой масс отдельных составляющих какой-либо связанной физической системы взаимодействующих объектов (тел, частиц), находящихся в свободном состоянии, и массой само́й этой системы. В таком определении знак дефекта масс положителен; иногда дефект масс определяют как разность между массой системы и суммой масс компонент, в этом случае знак отрицателен[1]. С точностью до коэффициента c2 дефект массы равен энергии связи Eсв системы:

Так, дефект масс атомного ядра — связанной системы из Z протонов и N нейтронов — равен

где mp и mn — массы свободных протона и нейтрона, соответственно,

M(Z, N) — масса ядра.

Например, масса Md дейтрона (ядра атома дейтерия, тяжёлого изотопа водорода 2H), состоящего из одного протона и одного нейтрона, равна 2,013 553 а.е.м.[2] (1875,613 МэВ/c2 в энергетическом эквиваленте)[3]. Масса свободного протона равна 1,007 276 а.е.м.[4] (938,272 МэВ/c2)[5], нейтрона — 1,008 665 а.е.м.[6] (939,565 МэВ/c2)[7]. Дефект масс будет равен

ΔMd = mp + mnMd = 0,002 388 а.е.м. = 2,224 МэВ/c2.

В результате слияния одного моля протонов (масса 1,007 276 г) и одного моля нейтронов (масса 1,008 665 г) образуется 1 моль дейтронов массой 2,013 553 г, что на 0,002 388 г меньше, чем сумма масс исходных компонентов. Указанный дефект массы выделится как энергия, равная энергии связи одного дейтрона (Eсв(d) = 2,224 МэВ), умноженной на число Авогадро (количество дейтронов в одном моле): 2,224 МэВ · NA = 214,6 ГДж (эквивалентно теплоте сгорания 5 тонн бензина).

Удельная энергия связи в зависимости от массового числа для бета-стабильных нуклидов

Для атомных ядер понятие дефекта массы тесно связано с понятием упаковочного коэффициента (упаковочного множителя) f или удельной энергии связи εсв, т.е. дефекта массы или энергии связи, приходящихся на один нуклон:

f = ΔM / A,
εсв = Eсв / A,

где A = Z + Nмассовое число, общее количество нуклонов (протонов и нейтронов) в ядре. Удельная энергия связи и упаковочный коэффициент характеризуют устойчивость ядра.

Можно определить также относительный дефект массы системы — безразмерную величину, представляющую собой отношение дефекта массы ΔM к сумме масс Mi компонентов системы: Δμ = ΔMMi. Типичные значения относительного дефекта массы для атомных ядер средней массы составляют 0,008—0,009, для атомов (без учёта дефекта массы ядра) ~10−8...10−6. Астрономические объекты могут иметь существенный гравитационный дефект масс. Так, для звезды, близкой по массе к Солнцу, относительный гравитационный дефект массы составляет ~10−6, для белого карлика ~10−3...10−4, для нейтронной звезды ~10−1. Наибольший относительный дефект масс среди гравитационно связанных объектов характерен для чёрных дыр; он может достигать десятков процентов[1]. Так, при слиянии двух чёрных дыр суммарной массой 65 M, которое вызвало гравитационно-волновой всплеск GW150914, зафиксированный 14 сентября 2015 года, образовалась чёрная дыра массой 62 M; дефект массы в 3 M был излучён в форме гравитационных волн[8].

Дефект массы всегда возникает в результате превращения энергии связи в энергию излучения (электромагнитного, нейтринного, гравитационного), покидающего образовавшуюся связанную систему[1].

Энциклопедичный YouTube

  • 1/3
    Просмотров:
    5 588
    585
    1 278 559
  • Дефект массы
  • Дефект массы. Энергия связи #дефект #массануклона #массядра #атомы #shorts #подготовкаегэ #физикаегэ
  • Откуда берется МАССА у частиц?

Субтитры

См. также

Примечания

  1. 1 2 3 Хлопов М. Ю. Дефект массы // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 591. — 707 с. — 100 000 экз.
  2. Deuteron mass in u // The NIST Reference on Constants, Units, and Uncertainty. CODATA Internationally recommended 2018 values of the Fundamental Physical Constants. — National Institute of Standarts and Technologies, 2018. (Tiesinga E. et al. CODATA recommended values of the fundamental physical constants: 2018 (англ.) // Reviews of Modern Physics. — 2021. — Vol. 93, no. 2. — P. 025010-1—025010-63. — doi:10.1103/RevModPhys.93.025010. [исправить])
  3. Deuteron mass energy equivalent in MeV // The NIST Reference on Constants, Units, and Uncertainty. CODATA Internationally recommended 2018 values of the Fundamental Physical Constants. — National Institute of Standarts and Technologies, 2018.
  4. Proton mass in u // The NIST Reference on Constants, Units, and Uncertainty. CODATA Internationally recommended 2018 values of the Fundamental Physical Constants. — National Institute of Standarts and Technologies, 2018.
  5. Proton mass energy equivalent in MeV // The NIST Reference on Constants, Units, and Uncertainty. CODATA Internationally recommended 2018 values of the Fundamental Physical Constants. — National Institute of Standarts and Technologies, 2018.
  6. Neutron mass in u // The NIST Reference on Constants, Units, and Uncertainty. CODATA Internationally recommended 2018 values of the Fundamental Physical Constants. — National Institute of Standarts and Technologies, 2018.
  7. Proton mass energy equivalent in MeV // The NIST Reference on Constants, Units, and Uncertainty. CODATA Internationally recommended 2018 values of the Fundamental Physical Constants. — National Institute of Standarts and Technologies, 2018.
  8. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration). Observation of Gravitational Waves from a Binary Black Hole Merger (англ.) // Physical Review Letters. — 2016. — Vol. 116, no. 6. — P. 061102. — doi:10.1103/PhysRevLett.116.061102. Архивировано 25 октября 2019 года.

Ссылки

Эта страница в последний раз была отредактирована 13 августа 2023 в 15:12.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).