Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Задача Римана о распаде произвольного разрыва

Из Википедии — свободной энциклопедии

Задача Римана о распаде произвольного разрыва — задача о построении аналитического решения нестационарных уравнений механики сплошных сред, в применении к распаду произвольного разрыва[1]. Полностью решена в ограниченном круге частных случаев — для уравнений газовой динамики идеального газа и некоторых более точных приближений (т. н. газ с двучленным уравнением состояния) и уравнений теории мелкой воды. Решение для уравнений магнитной газовой динамики построимо, по всей видимости, вплоть до необходимости численного решения одного достаточно сложного обыкновенного дифференциального уравнения.

Постановка

Решается одномерная задача о распаде разрыва — то есть полагается, что до начального момента времени две области пространства с различными значениями термодинамических параметров (для газовой динамики это плотность, скорость и давление газа) были разделены тонкой перегородкой, а в начальный момент времени перегородку убирают. Требуется построить решение (то есть зависимость всех термодинамических параметров от времени и координаты) при произвольных начальных значениях переменных.

Решение задачи о распаде произвольного разрыва состоит в определении газодинамического течения, возникающего при . Другими словами, речь идет о решении задачи Коши для уравнений газовой динамики, в которой начальные условия заданы в виде описанного выше произвольного разрыва.

Решение

Решение задачи Римана для идеального изначально покоящего газа с показателем адиабаты и относительным скачком давления и плотности . По оси абсцисс отложена автомодельная переменная (безразмерная координата), по оси ординат — давление, плотность и скорость в относительных единицах. Слева направо: покоящийся газ, волна разрежения, контактный разрыв, ударная волна, покоящийся газ.

Оказывается, что для систем уравнений, записываемых в дивергентной форме, решение будет автомодельным.

Решение ищется в виде набора элементарных волн, определяющегося структурой системы уравнений. В частности, для газовой динамики это: ударная волна, волна разрежения, контактный разрыв. Приведём решение в явном виде для частного случая покоящегося идеального газа с показателем адиабаты . Пусть в начальный момент давление , плотность и скорость имеют вид:

и — волна идёт направо. Тогда в произвольный момент времени решение имеет вид

Невозмущённое вещество Волна разрежения Область между фронтом волны разрежения и контактным разрывом Область между контактным разрывом и фронтом ударной волны Невозмущённое вещество

Здесь — скорость звука в невозмущенной среде слева, , , , — параметры газа и скорость звука между фронтом ударной волны и контактным разрывом, , , — параметры газа между контактным разрывом и ударной волной, — скорость ударной волны. Эти пять параметров определяются из нелинейной системы уравнений, отвечающих законам сохранения энергии, массы и импульса:

Первые три уравнения здесь соответствуют соотношениям Гюгонио для идеального газа[2], четвёртое и пятое — соотношениям в волне разрежения[3].

Применение

Решение задачи Римана находит применение в численных методах при решении нестационарных задач с большими разрывами. Именно на решении (точном или приближенном) задачи Римана о распаде разрыва основывается метод Годунова решения систем нестационарных уравнений механики сплошной среды.

Примечания

  1. Riemann, Bernhard. über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite (Deutsch) // Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen. — 1860. — Т. 8. — С. 43-66. Архивировано 24 июля 2020 года.
  2. Зельдович Я. Б., Райзер Ю. П. Физика ударных волн и высокотемпературных гидродинамических явлений. — Москва: Наука, 1966. — С. 51. — 688 с.
  3. Зельдович Я. Б., Райзер Ю. П. Физика ударных волн и высокотемпературных гидродинамических явлений. — Москва: Наука, 1966. — С. 41. — 688 с.
Эта страница в последний раз была отредактирована 28 июня 2022 в 04:13.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).