To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Riemann problem

From Wikipedia, the free encyclopedia

A Riemann problem, named after Bernhard Riemann, is a specific initial value problem composed of a conservation equation together with piecewise constant initial data which has a single discontinuity in the domain of interest. The Riemann problem is very useful for the understanding of equations like Euler conservation equations because all properties, such as shocks and rarefaction waves, appear as characteristics in the solution. It also gives an exact solution to some complex nonlinear equations, such as the Euler equations.

In numerical analysis, Riemann problems appear in a natural way in finite volume methods for the solution of conservation law equations due to the discreteness of the grid. For that it is widely used in computational fluid dynamics and in computational magnetohydrodynamics simulations. In these fields, Riemann problems are calculated using Riemann solvers.

YouTube Encyclopedic

  • 1/1
    Views:
    3 350
  • Lyndon LaRouche Webcast, May 9th, 2014

Transcription

The Riemann problem in linearized gas dynamics

As a simple example, we investigate the properties of the one-dimensional Riemann problem in gas dynamics (Toro, Eleuterio F. (1999). Riemann Solvers and Numerical Methods for Fluid Dynamics, Pg 44, Example 2.5)

The initial conditions are given by

where x = 0 separates two different states, together with the linearised gas dynamic equations (see gas dynamics for derivation).

where we can assume without loss of generality . We can now rewrite the above equations in a conservative form:

:

where

and the index denotes the partial derivative with respect to the corresponding variable (i.e. x or t).

The eigenvalues of the system are the characteristics of the system . They give the propagation speed of the medium, including that of any discontinuity, which is the speed of sound here. The corresponding eigenvectors are

By decomposing the left state in terms of the eigenvectors, we get for some

Now we can solve for and :

Analogously

for

Using this, in the domain in between the two characteristics , we get the final constant solution:

and the (piecewise constant) solution in the entire domain :

Although this is a simple example, it still shows the basic properties. Most notably, the characteristics decompose the solution into three domains. The propagation speed of these two equations is equivalent to the propagation speed of sound.

The fastest characteristic defines the Courant–Friedrichs–Lewy (CFL) condition, which sets the restriction for the maximum time step for which an explicit numerical method is stable. Generally as more conservation equations are used, more characteristics are involved.

References

  • Toro, Eleuterio F. (1999). Riemann Solvers and Numerical Methods for Fluid Dynamics. Berlin: Springer Verlag. ISBN 3-540-65966-8.
  • LeVeque, Randall J. (2004). Finite-Volume Methods for Hyperbolic Problems. Cambridge: Cambridge University Press. ISBN 0-521-81087-6.

See also

This page was last edited on 29 October 2023, at 14:49
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.