Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Граничное представление

Из Википедии — свободной энциклопедии

Пример кузова, созданный с помощью B-rep модели. Обратите внимание, что поверхностные участки сшиваются.

В твердотельном моделировании и компьютерном проектировании, граничное представление, часто обозначаемое как B-rep или BREP, — способ представления фигур с помощью границ. Твердое тело представляет собой совокупность взаимосвязанных элементов поверхности - границ между телом и окружающим пространством.

Обзор

Граничное представление модели состоит из двух частей: топологии и геометрии (поверхности, кривые и точки). Основные топологические элементы: грани, ребра и вершины. Грань - ограниченная часть поверхности, ребро - ограниченная часть кривой, а вершина - точка. Другими элементами являются оболочка (набор смежных граней), петля (контур ребер, ограничивающих грань) и контурные сноски (также известные как сноски крылатого края или полуребра), используемые для построения контура из ребер.

История

Основной метод граничного представления был разработан Яном Брайдом (Ian C. Braid) в Кембридже (для САПР) и Брюсом Баумгартом (Bruce G. Baumgart) в Стэнфорде (для систем компьютерного зрения) независимо в начале 1970-х годов. Брайд продолжил свою работу в исследовательском твердотельном моделлере BUILD, который был предшественником многих научных и коммерческих систем твердотельного моделирования. Брайд работал над коммерческими системами ROMULUS, предшественником Parasolid, и на ACIS. Parasolid и ACIS являются основой для многих современных коммерческих САПР.

После работ Брайда по твердым телам, шведская команда во главе с профессором Торстеном Чельберг в начале 1980-х годов разработала философию и методы для работы с гибридными моделями, каркасными, листовыми объектами и объемными моделями. В Финляндии Мартти Мянтюля разработал систему твердотельного моделирования под названием GWB. Над граничным представлением так же работали Истман и Вейлер в США, а профессор Фумихико Кимура и его команда из Токийского университета в Японии создали свои собственные системы граничного моделирования.

По сравнению представлением в виде конструктивной блочной геометрии (КБГ), (англ. CSG), которая использует только примитивные объекты и Булевы операции для их объединения, граничное представление является более гибким и имеет намного более богатый набор операций: экструзия, создание фасок, смешивание, подготовки, обстрелов, настройки и другие. Это делает граничное представление более подходящим выбором для САПР. CSG изначально использовался несколькими коммерческими системами, потому что его было проще реализовать. Появление надежных коммерческих ядер BREP-моделирования, таких как Parasolid и ACIS, указанных выше, привело к широкому внедрению граничного представления в САПР.

Граничное представление по сути является локальным представлением смежных граней, ребер и вершин. Расширением для этого стало группировка подэлементов формы в логические единицы, называемые геометрические деталями, или, просто, 'деталями'. Новаторская работа была проделана Киприану в Кембридже также с использованием системы BUILD и продолжена и расширена Джаредом и другими. Детали лежат в основе многих других разработок, позволяющих производить высокоуровневые "геометрические рассуждения" о форме для сравнения, процессов планирования, производства и т. д.

Граничное представление также было расширено, введением специальных не монолитных видов моделей, названных несборные модели. По описанию Брайда, нормальные твердые тела в природе обладают тем свойством, что для каждой точки на границе любая сколю либо малая сфера вокруг нее разделена на две части: одна - внутри, другая - снаружи объекта. Несложные модели нарушают это правило. Важным подклассом несложных моделей являются листовые объекты, которые используются для представления плоских объектов и интегрируют поверхностное моделирование в твердотельное моделирование.

Стандартизация

Стандарт обмена данными моделирования STEP определяет некоторые модели данных для отображения границ. Обобщенные топологические и геометрические модели определены в ISO 10303-42 "Геометрические и топологические представления". Следующие приложения интегрированы ресурсы (AIC) определение границ модели, ограничения универсального геометрические и топологические возможности:

  • ISO 10303-511 Топологически ограниченная поверхность, определение расширенные лицом, что является граничная поверхность, когда поверхность относится к типу элементарных (плоскости, цилиндрические, конические, сферические или тороидальные), или поверхности по траектории, или B сплайн поверхности. Границы определяются линиями, Коники, полилинии, кривые поверхности, или B сплайновых кривых
  • ISO 10303-514 расширенного граничного представления, твердый, определяющие объем с возможные пустоты, которые составляют передовые лица
  • ISO 10303-509 коллектор поверхности, не пересекая местность в 3D, который состоит из передовых граней
  • ISO 10303-521 коллектор подповерхностных, суб-уголок из коллектора поверхность
  • ISO 10303-508 несложная поверхности какой-либо предварительной договоренности лицо
  • ISO 10303-513 элементарного граничного представления схожи с ISO 10303-514, но ограничивается элементарной поверхности только
  • ISO 10303-512 граненый граничного представления упрощенной модели поверхности, построенной по плоской поверхности только

Дальнейшее чтение

Дополнительная информация о граничном представлении можно найти в различных статьях и следующих книгах:

  • Mäntylä, Martti. An Introduction to Solid Modeling (неопр.). — Computer Science Press, 1988. — ISBN 0-88175-108-1.
  • Chiyokura, H. Solid Modelling with DESIGNBASE (неопр.). — Addison-Wesley Publishing Company, 1988. — ISBN 0-201-19245-4.
  • Stroud, Ian. Boundary Representation Modelling Techniques (неопр.). — Springer[англ.], 2006. — ISBN 1-84628-312-4.

См. также

Внешние ссылки

Эта страница в последний раз была отредактирована 24 февраля 2024 в 01:55.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).