Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Волоконно-оптическая линия передачи

Из Википедии — свободной энциклопедии

Волоко́нно-опти́ческая система переда́чи (ВОСП — официальный термин, определённый в ГОСТ Р 54417-2011[1]), Волоко́нно-опти́ческая ли́ния свя́зи (ВОЛС — устоявшееся название) — волоконно-оптическая система, состоящая из пассивных и активных элементов, предназначенная для передачи информации в оптическом (как правило — ближнем инфракрасном) диапазоне[2].

Элементы ВОЛС

Активные компоненты

  • Регенератор — устройство, осуществляющее восстановление формы оптического импульса, который, распространяясь по волокну, претерпевает искажения. Регенераторы могут быть как чисто оптическими, так и электрическими, которые преобразуют оптический сигнал в электрический, восстанавливают его, а затем снова преобразуют в оптический.
  • Усилитель — устройство, усиливающее мощность сигнала. Усилители также могут быть оптическими и электрическими, осуществляющими оптико-электронное и электронно-оптическое преобразование сигнала.
  • Лазер — источник монохромного когерентного оптического излучения. В системах с прямой модуляцией, которые являются наиболее распространёнными, лазер одновременно является и модулятором, непосредственно преобразующим электрический сигнал в оптический.
  • Модулятор — устройство, модулирующее оптическую волну, несущую информацию по закону электрического сигнала. В большинстве систем эту функцию выполняет лазер, однако в системах с непрямой модуляцией для этого используются отдельные устройства.
  • Фотоприёмник (Фотодиод) — устройство, осуществляющее оптоэлектронное преобразование сигнала.

Пассивные компоненты

  • Волоконно-оптический кабель, светонесущими элементами которого являются оптические волокна. Наружная оболочка кабеля может быть изготовлена из различных материалов: поливинилхлорида, полиэтилена, полипропилена, тефлона и других материалов. Оптический кабель может иметь бронирование различного типа и специфические защитные слои (например, мелкие стеклянные иглы для защиты от грызунов).
  • Оптическая муфта — устройство, используемое для соединения двух и более оптических кабелей.
  • Оптический кросс — устройство, предназначенное для оконечивания оптического кабеля и подключения к нему активного оборудования.
  • Мультиплексор/Демультиплексор — широкий класс устройств, предназначенных для объединения и разделения информационных каналов. Мультиплексоры и демультиплексоры могут работать как во временно́й, так и в частотной областях, могут быть электрическими и оптическими (для систем со спектральным уплотнением).

Преимущества ВОЛП

Волоконно-оптические линии обладают рядом преимуществ перед проводными (медными) и радиорелейными системами связи:

  • Малое затухание сигнала (0,15 дБ/км в третьем окне прозрачности) позволяет передавать информацию на значительно большее расстояние без использования усилителей. Усилители в ВОЛП могут ставиться через 40, 80 и 120 километров, в зависимости от класса оконечного оборудования.
  • Высокая пропускная способность оптического волокна позволяет передавать информацию на высокой скорости, недостижимой для других систем связи.
  • Высокая надёжность оптической среды: оптические волокна не окисляются, не намокают, не подвержены слабому электромагнитному воздействию.
  • Информационная безопасность — информация по оптическому волокну передаётся «из точки в точку» и подслушать или изменить её можно только путём физического вмешательства в линию передачи.
  • Высокая защищённость от межволоконных влияний — уровень экранирования излучения более 100 дБ. Излучение в одном волокне совершенно не влияет на сигнал в соседнем волокне.
  • Пожаро- и взрывобезопасность при изменении физических и химических параметров
  • Малые габариты и масса

Недостатки ВОЛП

  • Относительная хрупкость оптического волокна. При сильном изгибании кабеля возможна поломка волокон или их замутнение из-за возникновения микротрещин, поэтому при прокладке кабеля необходимо использовать рекомендации производителя оптического кабеля (где, в частности, нормируется минимально допустимый радиус изгиба).
  • Сложность соединения в случае разрыва.
  • Сложная технология изготовления, как самого волокна, так и компонентов ВОЛП.
  • Сложность преобразования сигнала (в интерфейсном оборудовании).
  • Относительная дороговизна оптического конечного оборудования. Однако, оборудование является дорогим в абсолютных цифрах. Соотношение цены и пропускной способности для ВОЛП лучше, чем для других систем.
  • Замутнение волокна вследствие радиационного облучения (однако, существуют легированные волокна с высокой радиационной стойкостью[3]).

Применение ВОЛП

Достоинства волоконно-оптических линий обусловило их широкое применение в телекоммуникационных сетях самых разных уровней — от межконтинентальных магистралей до корпоративных и домашних компьютерных сетей.

Монтаж ВОЛП

Укладка кабеля

Волоконно-оптический кабель
Волоконно-оптический кабель

Оптический кабель для линий связи может быть уложен следующим образом:

  • В кабельную канализацию или кабельный коллектор;
  • Непосредственно в грунт — в предварительно подготовленную траншею или с использованием кабелеукладчика;
  • Подвес кабеля — воздушная линия связи.

Для каждого случая изготавливаются специальные кабели, отличающиеся типом оболочки, брони, допустимым растягивающим усилием и другими параметрами.

Монтаж муфт и кроссов

Для сращивания оптических кабелей применяются оптические муфты, представляющие собой пластиковые контейнеры, внутри которых расположена сплайс-пластина, удерживающая оптические волокна.

Оптический кросс представляет собой устройство, посредством которого осуществляется соединение оптических волокон кабеля со стандартными разъёмами. Кросс выполняется в виде металлической (как правило) коробки, на внешней панели которой находятся оптические разъёмы, а внутри — сплайс-пластина. Соединение разъёмов кросса с волокнами кабеля осуществляется с помощью пигтейлов — коротких кусков оптического волокна с разъёмами. Разъём пигтейла с внутренней стороны кросса соединяется с внешним разъёмом кросса, а другой конец приваривается к волокну оптического кабеля.

Оптические кроссы могут изготавливаться для монтажа в стандартную 19-дюймовую стойку, монтажа на стену и в других исполнениях. Кроссы могут иметь возможность открываться без демонтажа или не иметь таковой.

Сварка оптических волокон осуществляется в полуавтоматическом режиме специальными сварочными аппаратами.

Взаимодействие ВОЛП с сильным электромагнитным излучением

Сильное электромагнитное излучение способно вносить межканальные помехи в системах HDWDM и приводить к увеличению количества ошибок. Данное явление характерно в системах телематики на железной дороге, где ВОЛП прокладывается на опорах контактной сети в непосредственной близости от контактного провода. Ошибки появляются в моменты переходных процессов, например, при коротком замыкании. Данное явление объясняется эффектами Керра и Фарадея.

См. также

Примечания

Ссылки

Литература

  • Панфилов И.П., Дырда В.Е. Теория электрической связи. — М.: Радио и связь, 1991. — 344 с.
Эта страница в последний раз была отредактирована 11 ноября 2020 в 12:18.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).