To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Teorema de F. Riesz

De Wikipedia, la enciclopedia libre

El teorema de F. Riesz (llamado así por el matemático húngaro Frigyes Riesz (1880-1956)) es una proposición importante en análisis funcional, que establece que un espacio vectorial topológico (EVT) de Hausdorff es de dimensión finita si y solo si es localmente compacto. El teorema y sus consecuencias se utilizan de forma ubicua en el análisis funcional, a menudo sin mencionarlo explícitamente.

Enunciado

En primer lugar, debe recordarse que un espacio vectorial topológico (EVT) es de Hausdorff si y solo si el conjunto unitario que consta exclusivamente del origen es un subconjunto cerrado de . Una aplicación entre dos EVT se denomina isomorfismo EVT o isomorfismo en la categoría de EVT si es un homeomorfismo lineal.

Teorema de F. Riesz[1][2]

Un EVT de Hausdorff sobre el cuerpo ( es el conjunto de los números reales o complejos) es de dimensión finita si y sólo si es localmente compacto (o equivalentemente, si y sólo si incluye un entorno compacto del origen). En este caso, es un EVT isomorfo sobre .

Consecuencias

En todo momento, son EVTs (no necesariamente de Hausdorff), siendo un espacio vectorial de dimensión finita.

  • Cada subespacio vectorial de dimensión finita de un EVT de Hausdorff es un subespacio cerrado.[1]
  • Todos los EVTs de Hausdorff de dimensión finita son espacios de Banach y todas las normas en dicho espacio son equivalentes.[1]
  • Cerrado + de dimensión finita está cerrado: Si es un subespacio vectorial cerrado de un EVT y si es un subespacio vectorial de dimensión finita de (, y no son necesariamente de Hausdorff), entonces es un subespacio vectorial cerrado de .[1]
  • Cada isomorfismo del espacio vectorial (es decir, una función biyectiva lineal) entre dos EVTs de Hausdorff de dimensión finita es un isomorfismo entre EVTs.[1]
  • Singularidad de la topología: Si es un espacio vectorial de dimensión finita y si y son dos topologías sobre EVT de Hausdorff en , entonces .[1]
  • Dominio de dimensión finita: Una aplicación lineal entre EVT de Hausdorff es necesariamente continua.[1]
    • En particular, cada funcional lineal de un EVT de Hausdorff de dimensión finita es continuo.
  • Rango de dimensión finita: Cualquier aplicación lineal sobreyectiva continuo con un rango de dimensión finita de Hausdorff es una aplicación abierta[1]​ y, por lo tanto, un homomorfismo topológico.

En particular, el rango de es EVT-isomorfo a

  • Un EVT (no necesariamente de Hausdorff) es localmente compacto si y solo si es de dimensión finita.
  • La envolvente convexa de un espacio compacto de un EVT de Hausdorff de dimensión finita es compacta.[1]
    • Esto implica, en particular, que el recubrimiento convexo de un conjunto compacto es igual al recubrimiento convexo cerrado de ese conjunto.
  • Un EVT de Hausdorff localmente acotado con la propiedad de Heine-Borel es necesariamente de dimensión finita.[2]

Véase también

  • Lema de Riesz

Referencias

  1. a b c d e f g h i Narici y Beckenstein, 2011, pp. 101-105.
  2. a b Rudin, 1991, pp. 7-18.

Bibliografía

Esta página se editó por última vez el 8 dic 2023 a las 19:33.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.