To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Superespejo de neutrones

De Wikipedia, la enciclopedia libre

Un superespejo de neutrones es un material en capas muy pulido que se utiliza para reflejar haces de neutrones. Son un caso especial de reflector de neutrones multicapa con diferentes espesores de capa.[1]

Historia

El primer concepto de superespejo de neutrones fue propuesto por Ferenc Mezei,[2]​ inspirado en trabajos anteriores con rayos X.

Diseño

Los superespejos se producen depositando capas alternas de sustancias fuertemente contrastantes, como níquel y titanio, sobre un sustrato liso. Una sola capa de material de alto índice de refracción (por ejemplo, níquel) exhibe una reflexión externa total en pequeños ángulos rasantes hasta un ángulo crítico de . Para el níquel con abundancias isotópicas naturales, en grados es aproximadamente , donde es la longitud de onda del neutrón expresada en angstroms.

Se puede fabricar un espejo con un ángulo crítico efectivo mayor aprovechando la difracción (con pérdidas distintas de cero) que se produce en las multicapas apiladas.[3]​ El ángulo crítico de reflexión total, en grados, se convierte en aproximadamente , donde es el "valor m" relativo al níquel natural. Los valores de en el rango de 1 a 3 son comunes, y en áreas específicas para alta divergencia (por ejemplo, usando ópticas de enfoque cerca de la fuente, secuenciadores o áreas experimentales) se pueden lograr fácilmente el valor m=6.

El níquel tiene una sección transversal de dispersión positiva y el titanio tiene una sección transversal de dispersión negativa, y en ambos elementos la sección transversal de absorción es pequeña, lo que convierte al Ni-Ti en la tecnología más eficiente con neutrones. El número de capas de Ni-Ti necesarias aumenta rápidamente a medida que , con en el rango de 2 a 4, lo que afecta al coste. Esto tiene una gran influencia en la estrategia económica del diseño de instrumentos de neutrones.[4]

Véase también

Referencias

  1. Chupp, T. «Neutron Optics and Polarization». Consultado el 16 de abril de 2019. 
  2. Mezei, F. (1976). «Novel polarized neutron devices: supermirror and spin component amplifier». Communications on Physics (London) 1 (3): 81-85. 
  3. Hayter, J. B.; Mook, H. A. (1989). «Discrete Thin-Film Multilayer Design for X-ray and Neutron Supermirrors». Journal of Applied Crystallography 22 (1): 35-41. Bibcode:1989JApCr..22...35H. S2CID 94163755. doi:10.1107/S0021889888010003. 
  4. Bentley, P. M. (2020). «Instrument suite cost optimisation in a science megaproject». Journal of Physics Communications 4 (4): 045014. Bibcode:2020JPhCo...4d5014B. doi:10.1088/2399-6528/ab8a06. 
Esta página se editó por última vez el 4 abr 2024 a las 03:52.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.