To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Onda elástica

De Wikipedia, la enciclopedia libre

Una onda elástica es una perturbación tensional que se propaga a lo largo de un medio elástico. Por ejemplo las ondas sísmicas ocasionan temblores que pueden tratarse como ondas elásticas que se propagan por el terreno.

YouTube Encyclopedic

  • 1/4
    Views:
    422
    1 495
    3 199
    7 031
  • LA ONDA ELASTICA MORIBUNDA POEMA MASA DE LA FISICA I.wmv
  • Intensidad del sonido | 14/25 | UPV
  • Cuba, Elementos de sismología 1
  • ONDE 1

Transcription

Caso isótropo lineal

Ecuación de movimiento

En un medio elástico isótropo y lineales no sometido a fuerzas de volumen, la ecuación de movimiento de una onda elástica que relaciona la velocidad de propagación con las tensiones existentes en el medio elástico vienen dadas, usando el convenio de sumación de Einstein, por:

(1)

Donde es la densidad y el término entre paréntesis del segundo término coincide con la aceleración o derivada segunda del desplazamiento. Si el medio es isótropo, reescribiendo la ecuación anterior en términos de los desplazamientos producidos por la onda elástica, mediante las ecuaciones de Lamé-Hooke y las relaciones del tensor deformación con el vector desplazamiento, tenemos:

(2a)

Que escrita en la forma vectorial convencional resulta:

(2b)

Tipos de ondas

Ondas planas

En general una onda elástica puede ser una combinación de ondas longitudinales y de ondas transversales. Una manera simple de demostrar esto considerar la propagación de ondas planas en las que el vector de desplazamientos provocados por el paso de la onda tiene la forma . En este caso la ecuación (2b) se reduce para una onda plana a:

En las ecuaciones anteriores la componente X es una onda longitudinal que se propaga con velocidad mientras que la componente en las otras dos direcciones es transversal y se propaga con velocidad :

Donde la velocidad de la onda longitudinal y de la onda transversal vienen dadas por:

Siendo:

, el módulo de Young y el coeficiente de Poisson, respectivamente.

La siguiente tabla da las velocidades de propagación de las ondas longitudinales y transversales en diferentes materiales:[1]

Material vL [m/s] vT [m/s]
Aluminio 6,32·103 3,07·103
Cobre 4,36·103 2,13·103
Hierro 5,80·103 3,14·103

Ondas P y S

Una descomposición más general de una onda elástica que responde a la ecuación (2b) es la descomposición de Helmholtz para campos vectoriales, en una componente longitudinal a lo largo de la dirección del recorrido de la propagación y una onda transversal a la misma. Estas dos componentes se llaman usualmente componente P (onda P o primaria) y componente S (onda S o secundaria).

Para ver esto se define los potenciales de Helmholtz del campo de desplazamiento:

Ondas de Rayleigh

Imagen de ondas Rayleigh.

Las ondas de Rayleigh son ondas superficiales elípticas, que son una solución de la ecuación (2b), cuya amplitud disminuye exponencialmente con la profundidad. Un modelo simple de ondas de Rayleigh es que se da en un medio elástico semi-infinito, que podría representar el terreno. En términos de los potenciales elásticos, este tipo de ondas tienen la forma matemática:

Siendo:

, las amplitudes de ambos potenciales.
, la frecuencia angular y la velocidad de propagación de las ondas Rayleigh. Esta velocidad satisface la llamada condición de Rayleigh, que tiene una única solución real:

, son la profundidad y la distancia a lo largo de un corte vertical de terreno.
, son dos parámetros de atenuación con la profundidad dados por:

, son las velocidades de las ondas longitudinales y transversales.

Ondas de Love

Esquema de la propagación de una onda de Love. Las partículas vibran perpendicularmente a la dirección de propagación y la amplitud decae con la profundidad.

Las ondas de Love son ondas superficiales, que requieren la existencia de una capa superficial con propiedades mecánicas ligeramente diferente de las capas más profundas.

Caso anisótropo lineal

Ecuación de movimiento en medios anisótropos

En un medio elástico anisótropo y lineal cuya ecuación constitutiva viene dada por:

En ausencia de fuerzas de volumen la ecuación de movimiento vendrá dada por:ndo el convenio de sumación de Einstein, por:

(1b)

Usando la simetría la expresión anterior se puede escribir simplemente como:

Solución para ondas planas

La ecuación (1b) es ligeramente más complicada que la ecuación (1a) para comprobar si existen soluciones en forma de ondas planas buscamos soluciones complejas (la solución física real se puede tomar como la parte real de dichas soluciones) de la forma:

(*)

Donde:

es un conjunto de amplitudes.
es el número de onda.
es un vector unitario en la dirección de propagación (y por tanto perpendicular al frente de onda).
es la frecuencia angular.

Substituyendo (*) en (1b) se tiene que:

Definiendo la velocidad de fase como se tiene la existencia de soluciones de ondas planas implican que el valor admisible de la velocidad debe ser solución de la ecuación:

(3)

Ya que esa es la condición que garantiza que el sistema sea compatible indeterminado. Dado que la matriz de componentes es simétrica y definida positiva por los requerimientos sobre el tensor de constantes elásticas), las soluciones posibles para son números reales positivos. Esos valores son precisamente los autovalores del problema (3), y sus valores propios asociados dan las amplitudes relativas. Los tres vectores forman un sistema ortogonal, uno de ellos es paralelo o aproximadamente paralelo a la dirección de propagación de propagación (modo cuasi-longitudinal) y los otros dos son perpendiculares o aproximadamente perpendicular a la dirección de la misma (modos cuasi-transversales).

Referencias

  1. Atkin & Fox, 1980, p. 211

Bibliografía

Esta página se editó por última vez el 27 ene 2024 a las 22:28.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.