To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Matriz antisimétrica

De Wikipedia, la enciclopedia libre

Una matriz antisimétrica es una matriz cuadrada A cuya traspuesta es igual a su negativa, es decir vale la relación AT = -A.

Una matriz de m × n elementos (m = filas, n = columnas) :

es antisimétrica (o hemisimétrica), si es una matriz cuadrada (m = n) y para todo i, j =1,2,3,...,n. En consecuencia, para todo i. Por lo tanto, la matriz A asume la forma:


Ejemplo

La matriz

es antisimétrica, ya que


La diagonal principal se conserva y todos los otros números son cambiados de signo al opuesto. Nótese que la matriz traspuesta de la matriz antisimétrica A es -A, y que la antisimetría es respecto a la diagonal principal.

Si n=m es impar el determinante de la matriz siempre será 0

Descomposición en matriz simétrica y antisimétrica

Sea A una matriz cuadrada, esta se puede descomponer en suma de parte simétrica y antisimétrica de la siguiente forma:

donde la parte antisimétrica es

Demostración
Se utilizan las propiedades de la transposición.

Queda entonces demostrado por definición que es antisimétrica.

Véase también

Enlaces externos

Esta página se editó por última vez el 1 may 2020 a las 06:00.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.