To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Matriz transpuesta

De Wikipedia, la enciclopedia libre

La traspuesta AT de una matriz A puede ser obtenida reflejando los elementos a lo largo de su diagonal. Repitiendo el proceso en la matriz traspuesta devuelve los elementos a su posición original. Así, la traspuesta de una traspuesta es la matriz original, (AT)T = A.
La traspuesta AT de una matriz A puede ser obtenida reflejando los elementos a lo largo de su diagonal. Repitiendo el proceso en la matriz traspuesta devuelve los elementos a su posición original. Así, la traspuesta de una traspuesta es la matriz original, (AT)T = A.

Sea una matriz con filas y columnas. La matriz traspuesta, denotada con .[1][2]

Está dada por:

[3]

En donde el elemento de la matriz original se convertirá en el elemento de la matriz traspuesta .

Ejemplos

Otro ejemplo un poco más grande es el siguiente:

Propiedades

Involutiva
  • Para toda matriz ,
Demostración
Se recurre a la definición de trasposición elemento a elemento, sean aij dichos elementos, denotando por A = (aij)ij a la matriz, se tiene

Distributiva
  • Sean A y B matrices con elementos en un anillo y sea :
Demostración
Denotando por A = (aij)ij, B = (bij)ij y A+B = (cij)ij, donde cij = aij+bij, se tiene

Lineal
Demostración
Se recurre a la definición de producto por escalar como operación externa

sea dij = c aij, con esta notación se tiene c A = (dij)ij, por trasposición queda

  • Para el producto usual de las matrices y ,
Demostración
Se recurre a la definición de producto matricial, sean A = (aij)ij, B = (bij)ij y A B = (cij)ij entonces por definición

por trasposición queda

que coincide con la definición de producto para Bt At

  • Si es una matriz cuadrada cuyas entradas son números reales, entonces

es semidefinida positiva.

Demostración
Sean A una matriz de tamaño m × n y x un vector columna de n componentes perteneciente a un espacio normado, con denotando la norma euclídea.

de las propiedades de la norma se deduce xt At A x ≥ 0 para todo x, luego At A es semidefinida positiva.

Definiciones asociadas

Una matriz cuadrada es simétrica si coincide con su traspuesta:

Una matriz cuadrada es antisimétrica si su traspuesta coincide con su inverso aditivo.

Si los elementos de la matriz son números complejos y su traspuesta coincide con su conjugada, se dice que la matriz es hermítica.

y antihermítica si

Vale la pena observar que si una matriz es hermítica (matriz simétrica en el caso de matriz real) entonces es diagonalizable y sus autovalores son reales. (El recíproco es falso).

Véase también

  • Escítala : Instrumento antiguo para cifrar mensajes basado en la trasposición de matrices.

Referencias

  1. García Merayo, Félix (1995). «7.5». Lecciones prácticas de cálculo numérico (1 edición). Universidad Pontifica Comillas. p. 96. ISBN 9788487840685. 
  2. Kurmyshev, Evguenii (2003). «2.2.3». Fundamentos de métodos matemáticos para física e ingeniería (1 edición). LIMUSA SA. p. 35. ISBN 9789681863661. 
  3. «MATRIZ TRASPUESTA». p. 2. 

Enlaces externos

Esta página se editó por última vez el 8 sep 2021 a las 15:06.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.