To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Función homogénea

De Wikipedia, la enciclopedia libre

En matemática, una función homogénea es una función que presenta un comportamiento multiplicativo de escala interesante: si todos los argumentos se multiplican por un factor constante, entonces el valor de la función resulta ser un cierto número de veces el factor multiplicativo elevado a una potencia. Dicha potencia es el grado de la función homogénea (véase Definición formal).

Definición formal

Supongamos una función cuya definición es entre dos espacios vectoriales sobre el mismo cuerpo . Entonces se dice que es homogénea de grado k si:

Ejemplos

Las funciones lineales

Cualquier función lineal es homogénea de grado 1, puesto que por definición se tiene:

para todo y . Del mismo modo, cualquier función multilineal es homogénea de grado n, por definición.

para todo y . Se sigue que la n-ésima derivada de Fréchet de una función entre dos espacios de Banach y es homogénea de grado .

Polinomios homogéneos

Los monomios de variables reales definen funciones homogéneas. Por ejemplo,

es homogénea de grado 10 puesto que:

Un polinomio homogéneo es un polinomio tal que todos sus términos tienen el mismo grado. Por ejemplo,

es un polinomio homogéneo de grado 5.

Propiedades

Supongamos que una función es infinitamente diferenciable. Entonces f es homogénea de grado k si y sólo si:

.


  • Teorema: Sea es diferenciable y homogénea de grado k. Entonces sus derivadas parciales de primer orden son funciones homogéneas de grado k-1. es decir

Éste resultado se prueba de la misma manera que el teorema de Euler.

Demostración
Sea y la función homogénea.

Por homogeneidad de la función se sabe que

Se define como . Reemplazando la en la expresión anterior nos queda:

Se deriva ambos lados de la igualdad con respecto a

por regla de la cadena la expresión se vuelve:

Sustituyendo nuevamente :

y finalmente da el resultado que se quiere obtener:

Aplicación a las EDOs

La substitución convierte la ecuación diferencial ordinaria (EDO)

Donde y son funciones homogéneas del mismo grado, en la ecuación diferencial separable:

Referencia

Bibliografía

  • Blatter, Christian (1979). «20. Mehrdimensionale Differentialrechnung, Aufgaben, 1.». Analysis II (2nd ed.) (en alemán). Springer Verlag. p. 188. ISBN 3-540-09484-9. 

Enlaces externos

Esta página se editó por última vez el 6 dic 2020 a las 22:29.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.