To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In differential geometry, the Yamabe flow is an intrinsic geometric flow—a process which deforms the metric of a Riemannian manifold. First introduced by Richard S. Hamilton,[1] Yamabe flow is for noncompact manifolds, and is the negative L2-gradient flow of the (normalized) total scalar curvature, restricted to a given conformal class: it can be interpreted as deforming a Riemannian metric to a conformal metric of constant scalar curvature, when this flow converges.

The Yamabe flow was introduced in response to Richard S. Hamilton's own work on the Ricci flow and Rick Schoen's solution of the Yamabe problem on manifolds of positive conformal Yamabe invariant.

Main results

The fixed points of the Yamabe flow are metrics of constant scalar curvature in the given conformal class. The flow was first studied in the 1980s in unpublished notes of Richard Hamilton. Hamilton conjectured that, for every initial metric, the flow converges to a conformal metric of constant scalar curvature. This was verified by Rugang Ye in the locally conformally flat case.[2] Later, Simon Brendle proved convergence of the flow for all conformal classes and arbitrary initial metrics.[3] The limiting constant-scalar-curvature metic is typically no longer a Yamabe minimizer in this context. While the compact case is settled, the flow on complete, non-compact manifolds is not completely understood, and remains a topic of current research.

Notes

  1. ^ Hamilton, Richard S. (1988). "The Ricci flow on surfaces". Mathematics and general relativity (Santa Cruz, CA, 1986). Contemp. Math. Vol. 71. Amer. Math. Soc., Providence, RI. pp. 237–262. doi:10.1090/conm/071/954419. MR 0954419.
  2. ^ Ye, Rugang (1994). "Global existence and convergence of Yamabe flow". J. Differential Geom. 39 (1): 35–50. doi:10.4310/jdg/1214454674.
  3. ^ Brendle, Simon (2005). "Convergence of the Yamabe flow for arbitrary initial energy". J. Differential Geom. 69 (2): 217–278. doi:10.4310/jdg/1121449107.


This page was last edited on 12 August 2023, at 00:40
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.