To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Willmore conjecture

From Wikipedia, the free encyclopedia

The torus with minimal Willmore energy, with major radius 2 and minor radius 1[1]

In differential geometry, the Willmore conjecture is a lower bound on the Willmore energy of a torus. It is named after the English mathematician Tom Willmore, who conjectured it in 1965.[2] A proof by Fernando Codá Marques and André Neves was announced in 2012 and published in 2014.[1][3]

YouTube Encyclopedic

  • 1/3
    Views:
    755
    742
    1 246
  • The Willmore conjecture and minimal surfaces - Fernando Codá Marques
  • 29º CBM - Palestras Plenárias - Fernando Codá Marques
  • Fernando Codá Marques - Min-max theory and applications I

Transcription

Willmore energy

Let v : M → R3 be a smooth immersion of a compact, orientable surface. Giving M the Riemannian metric induced by v, let H : M → R be the mean curvature (the arithmetic mean of the principal curvatures κ1 and κ2 at each point). In this notation, the Willmore energy W(M) of M is given by

It is not hard to prove that the Willmore energy satisfies W(M) ≥ 4π, with equality if and only if M is an embedded round sphere.

Statement

Calculation of W(M) for a few examples suggests that there should be a better bound than W(M) ≥ 4π for surfaces with genus g(M) > 0. In particular, calculation of W(M) for tori with various symmetries led Willmore to propose in 1965 the following conjecture, which now bears his name

For every smooth immersed torus M in R3, W(M) ≥ 2π2.

In 1982, Peter Wai-Kwong Li and Shing-Tung Yau proved the conjecture in the non-embedded case, showing that if is an immersion of a compact surface, which is not an embedding, then W(M) is at least 8π.[4]

In 2012, Fernando Codá Marques and André Neves proved the conjecture in the embedded case, using the Almgren–Pitts min-max theory of minimal surfaces.[3][1] Martin Schmidt claimed a proof in 2002,[5] but it was not accepted for publication in any peer-reviewed mathematical journal (although it did not contain a proof of the Willmore conjecture, he proved some other important conjectures in it). Prior to the proof of Marques and Neves, the Willmore conjecture had already been proved for many special cases, such as tube tori (by Willmore himself), and for tori of revolution (by Langer & Singer).[6]

References

  1. ^ a b c Marques, Fernando C.; Neves, André (2014). "Min-max theory and the Willmore conjecture". Annals of Mathematics. 179: 683–782. arXiv:1202.6036. doi:10.4007/annals.2014.179.2.6. MR 3152944.
  2. ^ Willmore, Thomas J. (1965). "Note on embedded surfaces". Analele Ştiinţifice ale Universităţii "Al. I. Cuza" din Iaşi, Secţiunea I a Matematică. 11B: 493–496. MR 0202066.
  3. ^ a b Frank Morgan (2012) "Math Finds the Best Doughnut", The Huffington Post
  4. ^ Li, Peter; Yau, Shing Tung (1982). "A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces". Inventiones Mathematicae. 69 (2): 269–291. doi:10.1007/BF01399507. MR 0674407.
  5. ^ Schmidt, Martin U. (2002). "A proof of the Willmore conjecture". arXiv:math/0203224.
  6. ^ Langer, Joel; Singer, David (1984). "Curves in the hyperbolic plane and mean curvature of tori in 3-space". The Bulletin of the London Mathematical Society. 16 (5): 531–534. doi:10.1112/blms/16.5.531. MR 0751827.
This page was last edited on 11 July 2021, at 19:20
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.