To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Volterra lattice

From Wikipedia, the free encyclopedia

In mathematics, the Volterra lattice, also known as the discrete KdV equation, the Kac–van Moerbeke lattice, and the Langmuir lattice, is a system of ordinary differential equations with variables indexed by some of the points of a 1-dimensional lattice. It was introduced by Marc Kac and Pierre van Moerbeke (1975) and Jürgen Moser (1975) and is named after Vito Volterra. The Volterra lattice is a special case of the generalized Lotka–Volterra equation describing predator–prey interactions, for a sequence of species with each species preying on the next in the sequence. The Volterra lattice also behaves like a discrete version of the KdV equation. The Volterra lattice is an integrable system, and is related to the Toda lattice. It is also used as a model for Langmuir waves in plasmas.

YouTube Encyclopedic

  • 1/3
    Views:
    324
    2 262
    2 336
  • Virasoro on the lattice: Volterra, Toda–2, and q–Toda | Olivier Babelon | EIMI | Лекториум
  • Identifying types of dislocation with the help of burger vector & line vector
  • Linear defects pt1. Dislocations

Transcription

Definition

The Volterra lattice is the set of ordinary differential equations for functions an:

where n is an integer. Usually one adds boundary conditions: for example, the functions an could be periodic: an = an+N for some N, or could vanish for n ≤ 0 and n ≥ N.

The Volterra lattice was originally stated in terms of the variables Rn = –log an in which case the equations are

References

  • Kac, M.; van Moerbeke, P. (1975), "Some probabilistic aspects of scattering theory", in Arthurs, A.M. (ed.), Functional integration and its applications (Proc. Internat. Conf., London, 1974), Oxford: Clarendon Press, pp. 87–96, ISBN 978-0198533467, MR 0481238
  • Kac, M.; van Moerbeke, Pierre (1975), "On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices.", Advances in Mathematics, 16 (2): 160–169, doi:10.1016/0001-8708(75)90148-6, MR 0369953
  • Moser, Jürgen (1975), "Finitely many mass points on the line under the influence of an exponential potential–an integrable system.", Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), Lecture Notes in Phys., vol. 38, Berlin: Springer, pp. 467–497, doi:10.1007/3-540-07171-7_12, ISBN 978-3-540-07171-6, MR 0455038


This page was last edited on 29 June 2023, at 20:22
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.