To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Vitali–Hahn–Saks theorem

From Wikipedia, the free encyclopedia

In mathematics, the Vitali–Hahn–Saks theorem, introduced by Vitali (1907), Hahn (1922), and Saks (1933), proves that under some conditions a sequence of measures converging point-wise does so uniformly and the limit is also a measure.

YouTube Encyclopedic

  • 1/1
    Views:
    1 382
  • Teorema de Hahn-Banach

Transcription

Statement of the theorem

If is a measure space with and a sequence of complex measures. Assuming that each is absolutely continuous with respect to and that a for all the finite limits exist Then the absolute continuity of the with respect to is uniform in that is, implies that uniformly in Also is countably additive on

Preliminaries

Given a measure space a distance can be constructed on the set of measurable sets with This is done by defining

where is the symmetric difference of the sets

This gives rise to a metric space by identifying two sets when Thus a point with representative is the set of all such that

Proposition: with the metric defined above is a complete metric space.

Proof: Let

Then
This means that the metric space can be identified with a subset of the Banach space .

Let , with

Then we can choose a sub-sequence such that exists almost everywhere and . It follows that for some (furthermore if and only if for large enough, then we have that the limit inferior of the sequence) and hence Therefore, is complete.

Proof of Vitali-Hahn-Saks theorem

Each defines a function on by taking . This function is well defined, this is it is independent on the representative of the class due to the absolute continuity of with respect to . Moreover is continuous.

For every the set

is closed in , and by the hypothesis we have that
By Baire category theorem at least one must contain a non-empty open set of . This means that there is and a such that
implies On the other hand, any with can be represented as with and . This can be done, for example by taking and . Thus, if and then
Therefore, by the absolute continuity of with respect to , and since is arbitrary, we get that implies uniformly in In particular, implies

By the additivity of the limit it follows that is finitely-additive. Then, since it follows that is actually countably additive.

References

  • Hahn, H. (1922), "Über Folgen linearer Operationen", Monatsh. Math. (in German), 32: 3–88, doi:10.1007/bf01696876
  • Saks, Stanislaw (1933), "Addition to the Note on Some Functionals", Transactions of the American Mathematical Society, 35 (4): 965–970, doi:10.2307/1989603, JSTOR 1989603
  • Vitali, G. (1907), "Sull' integrazione per serie", Rendiconti del Circolo Matematico di Palermo (in Italian), 23: 137–155, doi:10.1007/BF03013514
  • Yosida, K. (1971), Functional Analysis, Springer, pp. 70–71, ISBN 0-387-05506-1
This page was last edited on 8 November 2022, at 17:07
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.