To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Inner regular measure

From Wikipedia, the free encyclopedia

In mathematics, an inner regular measure is one for which the measure of a set can be approximated from within by compact subsets.

YouTube Encyclopedic

  • 1/3
    Views:
    762 540
    69 666
    78 485
  • How to Use a Vernier Caliper
  • Experiment #1 How to use Vernier Callipers and diameter of spherical body
  • Experiment #2 Screw Gauge Calculate the diameter and cross sectional area of a wire

Transcription

Definition

Let (X, T) be a Hausdorff topological space and let Σ be a σ-algebra on X that contains the topology T (so that every open set is a measurable set, and Σ is at least as fine as the Borel σ-algebra on X). Then a measure μ on the measurable space (X, Σ) is called inner regular if, for every set A in Σ,

This property is sometimes referred to in words as "approximation from within by compact sets."

Some authors[1][2] use the term tight as a synonym for inner regular. This use of the term is closely related to tightness of a family of measures, since a finite measure μ is inner regular if and only if, for all ε > 0, there is some compact subset K of X such that μ(X \ K) < ε. This is precisely the condition that the singleton collection of measures {μ} is tight.

Examples

When the real line R is given its usual Euclidean topology,

However, if the topology on R is changed, then these measures can fail to be inner regular. For example, if R is given the lower limit topology (which generates the same σ-algebra as the Euclidean topology), then both of the above measures fail to be inner regular, because compact sets in that topology are necessarily countable, and hence of measure zero.

References

  1. ^ Ambrosio, L., Gigli, N. & Savaré, G. (2005). Gradient Flows in Metric Spaces and in the Space of Probability Measures. Basel: ETH Zürich, Birkhäuser Verlag. ISBN 3-7643-2428-7.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. ^ Parthasarathy, K. R. (2005). Probability measures on metric spaces. AMS Chelsea Publishing, Providence, RI. xii+276. ISBN 0-8218-3889-X. MR2169627

See also

This page was last edited on 5 December 2023, at 05:07
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.