To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Tate cohomology group

From Wikipedia, the free encyclopedia

In mathematics, Tate cohomology groups are a slightly modified form of the usual cohomology groups of a finite group that combine homology and cohomology groups into one sequence. They were introduced by John Tate (1952, p. 297), and are used in class field theory.

YouTube Encyclopedic

  • 1/3
    Views:
    484
    501
    4 415
  • Galois Cohomology and Tate Duality - Larry Washington
  • Etale motivic cohomology and algebraic cycles - Vasudenvan Srinvas
  • On torsion in the cohomology of Shimura varieties - Ana Caraiani

Transcription

Definition

If G is a finite group and A a G-module, then there is a natural map N from to taking a representative a to (the sum over all G-conjugates of a). The Tate cohomology groups are defined by

  • for ,
  • quotient of by norms of elements of A,
  • quotient of norm 0 elements of A by principal elements of A,
  • for .

Properties

  • If
is a short exact sequence of G-modules, then we get the usual long exact sequence of Tate cohomology groups:
  • If A is an induced G module then all Tate cohomology groups of A vanish.
  • The zeroth Tate cohomology group of A is
(Fixed points of G on A)/(Obvious fixed points of G acting on A)

where by the "obvious" fixed point we mean those of the form . In other words, the zeroth cohomology group in some sense describes the non-obvious fixed points of G acting on A.

The Tate cohomology groups are characterized by the three properties above.

Tate's theorem

Tate's theorem (Tate 1952) gives conditions for multiplication by a cohomology class to be an isomorphism between cohomology groups. There are several slightly different versions of it; a version that is particularly convenient for class field theory is as follows:

Suppose that A is a module over a finite group G and a is an element of , such that for every subgroup E of G

  • is trivial, and
  • is generated by , which has order E.

Then cup product with a is an isomorphism:

for all n; in other words the graded Tate cohomology of A is isomorphic to the Tate cohomology with integral coefficients, with the degree shifted by 2.

Tate-Farrell cohomology

F. Thomas Farrell extended Tate cohomology groups to the case of all groups G of finite virtual cohomological dimension. In Farrell's theory, the groups are isomorphic to the usual cohomology groups whenever n is greater than the virtual cohomological dimension of the group G. Finite groups have virtual cohomological dimension 0, and in this case Farrell's cohomology groups are the same as those of Tate.

See also

References

  • M. F. Atiyah and C. T. C. Wall, "Cohomology of Groups", in Algebraic Number Theory by J. W. S. Cassels, A. Frohlich ISBN 0-12-163251-2, Chapter IV. See section 6.
  • Brown, Kenneth S. (1982). Cohomology of Groups. Graduate Texts in Mathematics. Vol. 87. New York-Berlin: Springer-Verlag. ISBN 0-387-90688-6. MR 0672956.
  • Farrell, F. Thomas (1977). "An extension of tate cohomology to a class of infinite groups". Journal of Pure and Applied Algebra. 10 (2): 153–161. doi:10.1016/0022-4049(77)90018-4. MR 0470103.
  • Tate, John (1952), "The higher dimensional cohomology groups of class field theory", Annals of Mathematics, 2, 56: 294–297, doi:10.2307/1969801, JSTOR 1969801, MR 0049950
This page was last edited on 18 August 2023, at 13:12
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.