To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Tardos function

From Wikipedia, the free encyclopedia

In graph theory and circuit complexity, the Tardos function is a graph invariant introduced by Éva Tardos in 1988 that has the following properties:[1][2]

To define her function, Tardos uses a polynomial-time approximation scheme for the Lovász number, based on the ellipsoid method and provided by Grötschel, Lovász & Schrijver (1981).[3] Approximating the Lovász number of the complement and then rounding the approximation to an integer would not necessarily produce a monotone function, however. To make the result monotone, Tardos approximates the Lovász number of the complement to within an additive error of , adds to the approximation, and then rounds the result to the nearest integer. Here denotes the number of edges in the given graph, and denotes the number of vertices.[1]

Tardos used her function to prove an exponential separation between the capabilities of monotone Boolean logic circuits and arbitrary circuits. A result of Alexander Razborov, previously used to show that the clique number required exponentially large monotone circuits,[4][5] also shows that the Tardos function requires exponentially large monotone circuits despite being computable by a non-monotone circuit of polynomial size. Later, the same function was used to provide a counterexample to a purported proof of P ≠ NP by Norbert Blum.[6]

References

  1. ^ a b Tardos, É. (1988), "The gap between monotone and nonmonotone circuit complexity is exponential" (PDF), Combinatorica, 8 (1): 141–142, doi:10.1007/BF02122563, MR 0952004
  2. ^ Jukna, Stasys (2012), Boolean Function Complexity: Advances and Frontiers, Algorithms and Combinatorics, vol. 27, Springer, p. 272, ISBN 9783642245084
  3. ^ Grötschel, M.; Lovász, L.; Schrijver, A. (1981), "The ellipsoid method and its consequences in combinatorial optimization", Combinatorica, 1 (2): 169–197, doi:10.1007/BF02579273, MR 0625550.
  4. ^ Razborov, A. A. (1985), "Lower bounds on the monotone complexity of some Boolean functions", Doklady Akademii Nauk SSSR, 281 (4): 798–801, MR 0785629
  5. ^ Alon, N.; Boppana, R. B. (1987), "The monotone circuit complexity of Boolean functions", Combinatorica, 7 (1): 1–22, CiteSeerX 10.1.1.300.9623, doi:10.1007/BF02579196, MR 0905147
  6. ^ Trevisan, Luca (August 15, 2017), "On Norbert Blum's claimed proof that P does not equal NP", in theory
This page was last edited on 13 November 2021, at 19:27
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.