To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Syngas fermentation

From Wikipedia, the free encyclopedia

Syngas fermentation, also known as synthesis gas fermentation, is a microbial process. In this process, a mixture of hydrogen, carbon monoxide, and carbon dioxide, known as syngas, is used as carbon and energy sources, and then converted into fuel and chemicals by microorganisms.[1]

The main products of syngas fermentation include ethanol, butanol, acetic acid, butyric acid, and methane.[2] Certain industrial processes, such as petroleum refining, steel milling, and methods for producing carbon black, coke, ammonia, and methanol, discharge enormous amounts of waste gases containing mainly CO and H
2
into the atmosphere either directly or through combustion. Biocatalysts can be exploited to convert these waste gases to chemicals and fuels as, for example, ethanol.[3] In addition, incorporating nanoparticles has been demonstrated to improve gas-liquid fluid transfer during syngas fermentation. [4]

There are several microorganisms which can produce fuels and chemicals by syngas utilization. These microorganisms are mostly known as acetogens including Clostridium ljungdahlii,[5] Clostridium autoethanogenum,[6] Eubacterium limosum,[7] Clostridium carboxidivorans P7,[8] Peptostreptococcus productus,[9] and Butyribacterium methylotrophicum.[10] Most use the Wood–Ljungdahl pathway.

Syngas fermentation process has advantages over a chemical process since it takes places at lower temperature and pressure, has higher reaction specificity, tolerates higher amounts of sulfur compounds, and does not require a specific ratio of CO to H
2
.[2] On the other hand, syngas fermentation has limitations such as:

YouTube Encyclopedic

  • 1/3
    Views:
    53 036
    6 262
    211 849
  • Process of Fermentation
  • Biochemical Conversion of Biomass to Biofuels
  • Gasification vs. Incineration

Transcription

References

  1. ^ a b Brown, Robert C. (2003). Biorenewable resources: engineering new products from agriculture. Ames, Iowa: Iowa State Press. ISBN 0-8138-2263-7.
  2. ^ a b c Worden, R.M., Bredwell, M.D., and Grethlein, A.J. (1997). Engineering issues in synthesis gas fermentations, Fuels and Chemicals from Biomass. Washington, DC: American Chemical Society, 321-335
  3. ^ Abubackar, H.N.; Veiga, M. C.; Kennes, C. (2011). "Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol" (PDF). Biofuels, Bioproducts and Biorefining. 5 (1): 93–114. doi:10.1002/bbb.256. hdl:2183/13730. S2CID 84912109.
  4. ^ Sajeev, Evelyn; Shekher, Sheshank; Ogbaga, Chukwuma C.; Desongu, Kwaghtaver S.; Gunes, Burcu; Okolie, Jude A. (June 2023). "Application of Nanoparticles in Bioreactors to Enhance Mass Transfer during Syngas Fermentation". Encyclopedia. 3 (2): 387–395. doi:10.3390/encyclopedia3020025.
  5. ^ Klasson, K.T.; Ackerson, M. D.; Clausen, E. C.; Gaddy, J.L. (1992). "Bioconversion of synthesis gas into liquid or gaseous fuels". Enzyme and Microbial Technology. 14 (8): 602–608. doi:10.1016/0141-0229(92)90033-K.
  6. ^ Abrini, J.; Naveau, H.; Nyns, E.J. (1994). "Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide". Archives of Microbiology. 161 (4): 345–351. doi:10.1007/BF00303591. S2CID 206774310.
  7. ^ Chang, I. S.; Kim, B. H.; Lovitt, R. W.; Bang, J. S. (2001). "Effect of CO partial pressure on cell-recycled continuous CO fermentation by Eubacterium limosum KIST612". Process Biochemistry. 37 (4): 411–421. doi:10.1016/S0032-9592(01)00227-8.
  8. ^ Ahmed, A; Lewis, R.S. (2007). "Fermentation of biomass generated syngas:Effect of nitric oxide". Biotechnology and Bioengineering. 97 (5): 1080–1086. doi:10.1002/bit.21305. PMID 17171719. S2CID 21650852.
  9. ^ Misoph, M.; Drake, H.L. (1996). "Effect of CO2 on the fermentation capacities of the acetogen Peptostreptococcus productus U-1". Journal of Bacteriology. 178 (11): 3140–3145. doi:10.1128/jb.178.11.3140-3145.1996. PMC 178064. PMID 8655492.
  10. ^ a b Henstra, A.M.; Sipma, J.; Reinzma, A.; Stams, A.J.M. (2007). "Microbiology of synthesis gas fermentation for biofuel production". Current Opinion in Biotechnology. 18 (3): 200–206. doi:10.1016/j.copbio.2007.03.008. PMID 17399976.
This page was last edited on 19 December 2023, at 09:45
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.